{ "cells": [ { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "# El operador de rezagos\n", "\n", "Ejemplo numérico para ilustrar el uso de los operadores de rezago, diferencia, y diferencia estacional." ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## Cargar paquetes necesarios" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## Importar los datos" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "* Leer una serie de tiempo ficticia de data\\LandD.csv y mostrarlos" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "data": { "text/plain": [ "Index(['y'], dtype='object')" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "datos = pd.read_csv('https://github.com/randall-romero/econometria/raw/master/data/LandD.csv', index_col=0, parse_dates=True)\n", "datos.columns" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## Obtener las series transformadas" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "* Operador de rezagos" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "datos['Lag_y'] = datos['y'].shift(1)\n", "datos['Lag2_y'] = datos['y'].shift(2)" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "* Operador de diferencias\n", "\\begin{align*}\n", "\\Delta y_t &= (1-L)y_t = y_t - y_{t-1} \\\\\n", "\\Delta^2 y_t &= (1-L)^2y_t = y_t - 2y_{t-1} + y_{t-2}\n", "\\end{align*}" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "datos['D_y'] = datos.y.diff()\n", "datos['D2_y'] = datos.y.diff(1).diff(1)" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "* Operador de diferencia estacional\n", "\n", "\\begin{equation*}\n", "\\Delta_4 y_t = (1-L^4)y_t = y_t - y_{t-4}\n", "\\end{equation*}" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "datos['S_y'] = datos.y.diff(4)" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "* Mostrar los resultados" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
yLag_yLag2_yD_yD2_yS_y
trimestre
2018-01-0110NaNNaNNaNNaNNaN
2018-04-011310.0NaN3.0NaNNaN
2018-07-011013.010.0-3.0-6.0NaN
2018-10-01810.013.0-2.01.0NaN
2019-01-01158.010.07.09.05.0
2019-04-011615.08.01.0-6.03.0
2019-07-011416.015.0-2.0-3.04.0
2019-10-011114.016.0-3.0-1.03.0
\n", "
" ], "text/plain": [ " y Lag_y Lag2_y D_y D2_y S_y\n", "trimestre \n", "2018-01-01 10 NaN NaN NaN NaN NaN\n", "2018-04-01 13 10.0 NaN 3.0 NaN NaN\n", "2018-07-01 10 13.0 10.0 -3.0 -6.0 NaN\n", "2018-10-01 8 10.0 13.0 -2.0 1.0 NaN\n", "2019-01-01 15 8.0 10.0 7.0 9.0 5.0\n", "2019-04-01 16 15.0 8.0 1.0 -6.0 3.0\n", "2019-07-01 14 16.0 15.0 -2.0 -3.0 4.0\n", "2019-10-01 11 14.0 16.0 -3.0 -1.0 3.0" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "datos" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "Nótese que a pesar de que la serie original está en números enteros, las demás están en floats (dependiendo de su versión de pandas). Esto se debe a que versiones de Pandas anteriores a la 1.0 no tienen un valor para datos faltantes (NaN) para números enteros." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 4 }