{
"cells": [
{
"cell_type": "markdown",
"id": "b54a4353",
"metadata": {},
"source": [
"```{include} ../math-definitions.md\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "776c32cb",
"metadata": {
"tags": [
"hide-input"
]
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"plt.style.use('seaborn-talk')\n",
"\n",
"\n",
"from statsmodels.graphics.tsaplots import plot_acf, plot_pacf\n",
"from statsmodels.tsa.statespace.sarimax import SARIMAX"
]
},
{
"cell_type": "markdown",
"id": "0343bafe",
"metadata": {},
"source": [
"# Modelo ARIMA estacional\n",
"\n",
"En un modelo ARIMA estacional, términos AR y MA predicen $ y_{t} $ usando valores de datos y errores con rezagos que son múltiplos de $s$\n",
"\n",
"Por ejemplo, con datos trimestrales (s=4),\n",
"\n",
"- un modelo autorregresivo estacional de primer orden usa $y_{t-4}$ para predecir $y_{t}$, mientras que uno de segundo orden usa $y_{t-4}, y_{t-8}$ para ello.\n",
"- un modelo de media móvil estacional de primer orden usa $\\epsilon_{t-4}$ para predecir $y_{t}$, mientras que uno de segundo orden utiliza $\\epsilon_{t-4}, \\epsilon_{t-8}$.\n",
"\n",
"\n",
"Por ejemplo, si quisiéramos pronosticar el número de pasajeros extranjeros que viajarán por el SJO en agosto 2020, tiene mucho sentido modelar ese valor en función del número de pasajeros extranjeros que viajaron por SJO en agosto de años anteriores."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "607660f6",
"metadata": {
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
1
\n",
"
2
\n",
"
3
\n",
"
4
\n",
"
5
\n",
"
6
\n",
"
7
\n",
"
8
\n",
"
9
\n",
"
10
\n",
"
11
\n",
"
12
\n",
"
\n",
" \n",
" \n",
"
\n",
"
2011
\n",
"
116.3
\n",
"
105.4
\n",
"
128.9
\n",
"
103.1
\n",
"
82.7
\n",
"
88.0
\n",
"
103.3
\n",
"
102.9
\n",
"
64.6
\n",
"
62.6
\n",
"
77.5
\n",
"
90.3
\n",
"
\n",
"
\n",
"
2012
\n",
"
115.8
\n",
"
108.1
\n",
"
130.9
\n",
"
106.0
\n",
"
82.2
\n",
"
89.1
\n",
"
105.9
\n",
"
105.7
\n",
"
67.8
\n",
"
60.4
\n",
"
79.3
\n",
"
92.4
\n",
"
\n",
"
\n",
"
2013
\n",
"
122.9
\n",
"
109.6
\n",
"
133.0
\n",
"
108.5
\n",
"
85.3
\n",
"
95.0
\n",
"
110.3
\n",
"
112.8
\n",
"
70.0
\n",
"
67.3
\n",
"
83.5
\n",
"
107.7
\n",
"
\n",
"
\n",
"
2014
\n",
"
132.3
\n",
"
120.9
\n",
"
146.3
\n",
"
111.9
\n",
"
93.1
\n",
"
96.4
\n",
"
111.4
\n",
"
116.8
\n",
"
71.7
\n",
"
67.3
\n",
"
85.3
\n",
"
104.9
\n",
"
\n",
"
\n",
"
2015
\n",
"
137.2
\n",
"
122.7
\n",
"
143.8
\n",
"
122.8
\n",
"
96.5
\n",
"
105.1
\n",
"
121.5
\n",
"
129.9
\n",
"
79.6
\n",
"
76.4
\n",
"
100.5
\n",
"
122.6
\n",
"
\n",
"
\n",
"
2016
\n",
"
149.2
\n",
"
141.8
\n",
"
161.3
\n",
"
132.0
\n",
"
108.1
\n",
"
113.3
\n",
"
134.6
\n",
"
138.7
\n",
"
84.5
\n",
"
83.2
\n",
"
102.4
\n",
"
124.2
\n",
"
\n",
"
\n",
"
2017
\n",
"
153.6
\n",
"
145.1
\n",
"
179.0
\n",
"
148.7
\n",
"
119.4
\n",
"
126.8
\n",
"
141.0
\n",
"
142.8
\n",
"
97.9
\n",
"
90.2
\n",
"
117.1
\n",
"
135.0
\n",
"
\n",
"
\n",
"
2018
\n",
"
165.7
\n",
"
161.1
\n",
"
189.4
\n",
"
161.3
\n",
"
127.4
\n",
"
134.1
\n",
"
148.9
\n",
"
156.0
\n",
"
100.3
\n",
"
93.9
\n",
"
120.4
\n",
"
140.7
\n",
"
\n",
"
\n",
"
2019
\n",
"
185.3
\n",
"
170.4
\n",
"
206.7
\n",
"
157.0
\n",
"
128.2
\n",
"
137.0
\n",
"
151.4
\n",
"
156.4
\n",
"
101.2
\n",
"
102.0
\n",
"
122.1
\n",
"
153.3
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" 1 2 3 4 5 6 7 8 9 10 \\\n",
"2011 116.3 105.4 128.9 103.1 82.7 88.0 103.3 102.9 64.6 62.6 \n",
"2012 115.8 108.1 130.9 106.0 82.2 89.1 105.9 105.7 67.8 60.4 \n",
"2013 122.9 109.6 133.0 108.5 85.3 95.0 110.3 112.8 70.0 67.3 \n",
"2014 132.3 120.9 146.3 111.9 93.1 96.4 111.4 116.8 71.7 67.3 \n",
"2015 137.2 122.7 143.8 122.8 96.5 105.1 121.5 129.9 79.6 76.4 \n",
"2016 149.2 141.8 161.3 132.0 108.1 113.3 134.6 138.7 84.5 83.2 \n",
"2017 153.6 145.1 179.0 148.7 119.4 126.8 141.0 142.8 97.9 90.2 \n",
"2018 165.7 161.1 189.4 161.3 127.4 134.1 148.9 156.0 100.3 93.9 \n",
"2019 185.3 170.4 206.7 157.0 128.2 137.0 151.4 156.4 101.2 102.0 \n",
"\n",
" 11 12 \n",
"2011 77.5 90.3 \n",
"2012 79.3 92.4 \n",
"2013 83.5 107.7 \n",
"2014 85.3 104.9 \n",
"2015 100.5 122.6 \n",
"2016 102.4 124.2 \n",
"2017 117.1 135.0 \n",
"2018 120.4 140.7 \n",
"2019 122.1 153.3 "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# read data from previous example\n",
"\n",
"sjodatos =pd.read_pickle(\"https://github.com/randall-romero/econometria/raw/master/data/SJO-pasajeros.pickle\")\n",
"sjodatoscuadro = sjodatos.unstack()\n",
"sjodatoscuadro['extranjeros'].round(1)"
]
},
{
"cell_type": "markdown",
"id": "8f565c07",
"metadata": {},
"source": [
"## Un modelo estacional puro\n",
"\n",
"| Año | May | Jun | Jul | Ago |\n",
"| ---: | --------------: | --------------: | --------------: | ---------------: |\n",
"| 2016 | | | | $y_{t-36}=138.7$ |\n",
"| 2017 | | | | $y_{t-24}=142.8$ |\n",
"| 2018 | | | | $y_{t-12}=156.0$ |\n",
"| 2019 | $y_{t-3}=128.2$ | $y_{t-2}=137.0$ | $y_{t-1}=151.4$ | $y_{t}=156.4$ |\n",
"\n",
"En general, un modelo puramente estacional puede representarse por\n",
"\\begin{multline*}\n",
"y_t = \\varphi_1y_{t-s} + \\varphi_2y_{t-2s} + \\dots+ \\varphi_Py_{t-Ps} +\\\\\n",
"+ \\varepsilon_t + \\vartheta_{1}\\varepsilon_{t-s} + \\vartheta_{2}\\varepsilon_{t-2s} + \\dots + \\vartheta_{Q}\\varepsilon_{t-Qs}\n",
"\\end{multline*}\n",
"\n",
"o bien, en términos de polinomios de rezagos\n",
"\\begin{equation*}\n",
"\\notationbrace{\\left(1 - \\varphi_1\\Lag^{s} - \\dots - \\varphi_P\\Lag^{Ps} \\right)}{$\\varPhi(\\Lag^s)$}y_{t} = \\notationbrace{\\left(1 + \\vartheta_{1}\\Lag^{s}+\\dots+\\vartheta_{Q}\\Lag^{Qs}\\right)}{$\\varTheta(\\Lag^s)$}\\varepsilon_{t}\n",
"\\end{equation*}\n",
"\n",
"\n",
"## Diferenciación estacional\n",
"\n",
"La diferenciación estacional se define como la diferencia entre un valor $ y_{t} $ y un valor rezagado un múltiplo de $s$ períodos.\n",
"\\begin{equation*}\n",
"\\Delta_{s} y_{t} = \\left(1-\\Lag^{s}\\right)y_t = y_t - y_{t-s}\n",
"\\end{equation*}\n",
"\n",
"Por ejemplo:\n",
"trimestral\n",
": $\\Delta_{4} y_{t} = \\left(1-\\Lag^{4}\\right)y_t = y_t - y_{t-4}$\n",
"\n",
"mensual\n",
": $\\Delta_{12} y_{t} = \\left(1-\\Lag^{12}\\right)y_t = y_t - y_{t-12}$\n",
"\n",
"\n",
"Nótese que siguiendo esta notación $ \\Delta y_t = \\Delta_1 y_t $. Pero\n",
"```{warning}\n",
"\\begin{align*}\n",
" \\Delta_2 y_t &\\neq \\Delta^2 y_t \\\\\n",
"\\left(1 - \\Lag^2\\right)y_t &\\neq \\left(1-\\Lag\\right)^2y_t \\\\\n",
"\\left(1 - \\Lag^2\\right)y_t &\\neq \\left(1-2\\Lag + \\Lag^2\\right)y_t \\\\\n",
" y_t- y_{t-2} &\\neq y_t - 2y_{t-1} + y_{t-2}\n",
"\\end{align*}\n",
"```\n",
"\n",
"## Un modelo ARIMA para observaciones de la misma estación\n",
"\n",
"En general, podríamos plantear un modelo ARIMA para observaciones de una sola estación (mes, trimestre)\n",
"\\begin{equation*}\n",
"\\varPhi(\\Lag^s)\\Delta_s^D y_t = \\varTheta(\\Lag^s)\\varepsilon_{t}\n",
"\\end{equation*}\n",
"\n",
"Es usualmente razonable asumir que esta misma relación la cumplen las observaciones de la estación anterior\n",
"\\begin{equation*}\n",
"\\varPhi(\\Lag^s)\\Delta_s^D y_{t-1} = \\varTheta(\\Lag^s)\\varepsilon_{t-1}\n",
"\\end{equation*}\n",
"\n",
"En general, los errores de estas relaciones $\\varepsilon_{t}, \\varepsilon_{t-1}$ podrían estar correlacionadas, por lo que en principio podemos plantear el modelo ARIMA:\n",
"\\begin{equation*}\n",
"\\Phi(\\Lag)\\Delta^d \\varepsilon_{t} = \\Theta(\\Lag)\\epsilon_{t}\n",
"\\end{equation*}\n",
"donde $\\epsilon_{t}$ es ruido blanco.\n",
"\n",
"\n",
"## El modelo SARIMA\n",
"\n",
"Asumiendo que el proceso ARIMA de cada estación es invertible obtenemos\n",
"\\begin{align*}\n",
" \\varPhi(\\Lag^s)\\Delta_s^D y_t &= \\varTheta(\\Lag^s)\\varepsilon_{t}\\\\\n",
"\\varTheta^{-1}(\\Lag^s)\\varPhi(\\Lag^s)\\Delta_s^D y_t &= \\varepsilon_{t}\\\\\n",
"\\Phi(\\Lag)\\Delta^d\\varTheta^{-1}(\\Lag^s)\\varPhi(\\Lag^s)\\Delta_s^D y_t &= \\Phi(\\Lag)\\Delta^d\\varepsilon_{t}\\\\\n",
" &= \\Theta(\\Lag)\\epsilon_{t} \\\\\n",
"\\notation{\\Phi(\\Lag)}{$p$}\\notation{\\varPhi(\\Lag^s)}{$P$}\\notation{\\Delta^d_{\\phantom{D}}}{$d$}\\notation{\\Delta_s^D}{$D$} y_t &= \\notation{\\Theta(\\Lag)}{$q$}\\notation{\\varTheta(\\Lag^s)}{$Q$}\\epsilon_{t}\n",
"\\end{align*}\n",
"\n",
"Este modelo se denomina $\\alert{\\text{SARIMA}(p,d,q)\\times(P,D,Q)_s}$.\n",
"\n",
"\n",
"\n",
"{{ empieza_ejemplo }} Algunos modelos SARIMA {{ fin_titulo_ejemplo }}\n",
"\n",
"- $\\text{SARIMA}(0,0,0)\\times(0,1,0)_4 = \\text{SARIMA}(0,1,0)_4$\n",
"\\begin{align*}\n",
"\\Delta_4 y_t &= \\epsilon_{t} \\\\\n",
"(1-\\Lag^4) y_t &= \\epsilon_{t} \\\\\n",
"y_{t} - y_{t-4} &= \\epsilon_{t}\n",
"\\end{align*}\n",
"\n",
"- $\\text{SARIMA}(2,0,0)_4 = \\text{SAR}(2)_4$\n",
"\\begin{align*}\n",
"\\left(1-\\varphi_1\\Lag^4-\\varphi_2\\Lag^8\\right) y_t &= \\epsilon_{t} \\\\\n",
"y_{t} - \\varphi_1y_{t-4} - \\varphi_2y_{t-8} &= \\epsilon_{t}\n",
"\\end{align*}\n",
"\n",
"- $\\text{SARIMA}(0,0,3)_4 = \\text{SMA}(3)_4$\n",
"\\begin{align*}\n",
"y_t &= (1+\\vartheta_1\\Lag^4 +\\vartheta_2\\Lag^8 + \\vartheta_3\\Lag^{12})\\epsilon_{t} \\\\\n",
" &= \\epsilon_{t} + \\vartheta_1\\epsilon_{t-4} +\\vartheta_2\\epsilon_{t-8} + \\vartheta_3\\epsilon_{t-12}\n",
"\\end{align*}\n",
"\n",
"- $\\text{SARIMA}(0,1,1)\\times(0,1,1)_4$\n",
"\\begin{align*}\n",
"\\Delta \\Delta_4 y_t &= (1+\\theta\\Lag)(1+\\vartheta\\Lag^4 )\\epsilon_{t} \\\\\n",
"(1-\\Lag)(1-\\Lag^4) y_t &= (1+\\theta\\Lag)(1+\\vartheta\\Lag^4 )\\epsilon_{t} \\\\\n",
"(1-\\Lag -\\Lag^4 + \\Lag^5) y_t &= (1+\\theta\\Lag +\\vartheta\\Lag^4 +\\theta\\vartheta\\Lag^5)\\epsilon_{t} \\\\\n",
"y_{t} - y_{t-1} - y_{t-4} + y_{t-5} &= \\epsilon_{t} + \\theta\\epsilon_{t-1} + \\vartheta\\epsilon_{t-4} + \\theta\\vartheta\\epsilon_{t-5}\n",
"\\end{align*}\n",
"\n",
"- $\\text{SARIMA}(1,0,0)\\times(0,1,1)_4$\n",
"\\begin{align*}\n",
"(1-\\phi\\Lag) \\Delta_4 y_t &= (1+\\vartheta\\Lag^4 )\\epsilon_{t} \\\\\n",
"(1-\\phi\\Lag)(1-\\Lag^4) y_t &= (1+\\vartheta\\Lag^4 )\\epsilon_{t} \\\\\n",
"(1-\\phi\\Lag -\\Lag^4 + \\phi\\Lag^5) y_t &= (1+\\vartheta\\Lag^4 )\\epsilon_{t} \\\\\n",
"y_{t} - \\phi y_{t-1} - y_{t-4} + \\phi y_{t-5} &= \\epsilon_{t} + \\vartheta\\epsilon_{t-4}\n",
"\\end{align*}\n",
"\n",
"{{ termina_ejemplo }}\n",
"\n",
"\n",
"## Identificación de un modelo SARIMA\n",
"\n",
"La identificación de modelos estacionales es más difícil que la identificación de modelos no estacionales por dos razones:\n",
"\n",
"1. Muchas series estacionales exhiben también patrones no estacionales y por lo tanto las FAC y las FACP estimadas contienen ambos patrones.\n",
"2. No hay muchas correlaciones en valores $k$ múltiplos de $s$. Por ejemplo, en una serie mensual podríamos contar únicamente con $k = 12$, $k = 24$ y $k = 36$\n",
"\n",
"En la práctica, cuando se tienen dudas, se utilizan herramientas que automatizan esta selección de parámetros a partir de criterios de selección.\n",
"\n",
"\n",
"\n",
"{{ empieza_ejemplo }} Estimación de un modelo SARIMA {{ fin_titulo_ejemplo }}\n",
"\n",
"El correlograma de la serie de movimientos de pasajeros extranjeros en SJO sugiere que la serie tiene un componente estacional."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4ae84c90",
"metadata": {
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtoAAAFbCAYAAADr6inTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABTK0lEQVR4nO3debwcVZ338c/v3ps9ZCGBsBkISwQRI5HB0VFBXBlFxEEfI6A4joqjOOqgooOPwKgDwugooyIugygww4DLg6K4oLigoESDIiQQIGySkP0uuUt3/54/TvW91ZW+vdxb1d23+/t+vfrV3VWnqk7XcurXp06dMndHRERERETS1dXsDIiIiIiItCMF2iIiIiIiGVCgLSIiIiKSAQXaIiIiIiIZUKAtIiIiIpIBBdoiIiIiIhlQoC2ZM7MzzczN7Phm50XGdOJ2MbODot98fo3przSz1PtArTcfFebjZnZlOrmamrQOpo609nuRqUSB9hRhZrPN7D1m9gsz22pmI2a20cxuigKmnmbnUaQVRCfz883smc3Oi0iz6DhoL2a2wsyuNbP7zWzQzDab2V1m9kUzOzqR1s3su+PM5wVm9r9m9riZDZvZpiiOeHVDfkgHUnA2BZjZocD3gOXAj4F/AzYDewMvBv4LeBrwgWblUaSFHAR8FHgI+ENi3AZgFpBraI4kS7OAfLMz0YIOYvzjoFl0/E2Amb0S+DbwJHAVcD+wADgceA1wH/D7GubzceDDhO3wFeBBYB/gDcC3zOzrwJvdXcdTihRotzgzmwV8FzgY+Dt3/2YiycVm9lfAX6W4zD3cvbfeca1squZb0uXhUbiDzc6HpMfdU9+enVhemJkBc9y9L6tlZHX8dcD2+jdgF/BX7v5ofISZTQP2rDYDM3sLIcj+MXCyuw/Exn2SEHi/kfDH7P+mlnMBd9erhV/A2YADF9U53auBXwF90etXhIMrme4h4GfA0cDNwA7gwWjcz6LxBwPXA1uJyspo/L7AF4CHgWHgceAKYO/EMs6MfsPxieGLgc8Bj0TTPxJ9X1QmnwcBNwA7ozx+B1hWzH8irQNXAi8Cfhn9/p9F4/YD/p1Qw7ONUOj/Gfgg0D1Ovl9EKHg2EAq724G/jtIcFy2jH/gL8JEyeX8p8D/AA9H024EfAseVSXsk8L/AY8AQ8ATwU+AVk9yP/gG4N5rn/cA/AW8eZ7vMBy6O0g0RalGuBQ6uY3n7AJ+NfvMQsAn4EfCSWJpjo+20DhgAegn76Sll5ndllNf50T63Kdp2vwKeXWabJV/F7X9Q9P38xPxnApcQ9uFdwB3RdruS2D5fb76j9M+Lxu8CNgL/CTy9XD4qrM8jgR9E+9lW4BuEK1oOXFkm/f+J9sveKI+3A6fWuKzjo/meSSh/1kXreh1wdpn09WzHpwBfJRxLxf3iNuBNsTRdwL8APyfs/8OEMuYLlC8bxlsHLyYcZ9uj/N8FnFVPGRiNfwFh390RbcPVwFvSPnapoTwFXgEUgK8kpp0LrI32r32ofhzEt/E7CWXgUHF/rHObXkkNx2al46+efZYK5Xs0/tXUdu57LvD9aDsNRtvtJqKyvYbtdRjwdUK5PxztR5cQ/qxMaP1UWNYg8Lta0sbW0Xdj36dH+ewF9hpnmpmE43JgvDR6TeylGu3Wd2r0fkWtE5jZPxIC1nuBjzFWoH7bzN7u7sl5LQVuIZwkbiAU2kVzgVsJhcK/EE7umNlS4NeEA/grwHrgUOAdwAvN7Bh331Ehj/MJJ9hDCSfe1YQT3TuAE8zsWI9qKMxsEfALYAlwOXAP8HzCSWzOOIs4Bvg74EvA12LDn0G41PatKM/TgBOBiwh/KN5eZl4XAd3AZ6Lf+8/AzWb2pui3XwFcDbwOuNDMHnT3b8SmP5NQ43AV8CiwPyHw/YmZvdDdfxH7nbdE01xOKPQWR7/l2YTmQ3Uzs/cAnwbWEGo0ZgPvJxT4ybTF7bKUsF3uJgQA/wjcHm3XDVWWdxBhf1kS/ebfEbbTXxOCnx9FSU8hXPq8Lvqti4A3Ad80s9Pc/Zoys7+ZEPhfGKV/H3CTmR0U7S8/Bz4R/c4rCPsNhACkkmsJJ+gbo2UcAnyTcGk1qeZ8m9mzCTVIvYQ/L9uB10frpSZmtiz6HTMIQfojwEmEwLtc+o8RjtUfAB8hBGanAP9rZu9y98/VuOizCUHbF6P8rwI+a2Z7uvsFsXQ1rY/oPpIfEfb/zxOCuPmEY/L5jB2n0wn75w2EP9T9hCt2bwGeZ2bPcvfhShk3s7cRjqHfAB+P5vES4Atmdoi7vz8xSdky0MxOIpQVTxD+oPcStt+Xzexgd/+XKN2kjt1ay1N3/56Z/QfwXjP7kbv/dzSLzxMCv1e4+xNmVutx8B7C9vpS9BsfiYZncWxW+v317rNly/daz31m9lTCvvgEoVwv/kH5G2AFYb+plN9nEbb3dsLx8Vg03buBvzGz49x9JK31Q9gfjjSz57r7bVXSlvM3hN93tbs/WS6Buw+a2TcI+8zfUnrelMlodqSvV+UXsAXYWUf6hYR/8fcD82LD5xEO1l5gQWz4Q4TC6B/KzOtn0biPlRn3HUKgdkBi+DGE9nfnx4adSaLmlHDyc+AfE9O/Mxr+r7Fhn4yGnZZIWxz+s8TwYu3Ni8vkexZgZYZ/ndDOc98y+V4NTI8Nf1U0PEe4lFccXqw1+HVi3nPKLG8JoZ39TWXm+7oU958FhCDjz8Ds2PADov0kuV0+Q6i1W5GYz4GEqwlX1rDMm6L5vqzMuK4q62U2oWbuz4nhV0bz/Hxi+Guj4W+PDTs+GnZmmfkfRKJGjVBzvVutKCHwdnav0a4n37cRaruWJ/aTO5L5qLA+r4nSvjA2zAgBYEm+gZXRsE+Umc+3o224R5XlFddfL7HjO5bvkcTwmtYHIaB24ANVlm/ArDLD31Lu+CizDvYl1ABeU2YenyEc54fEhj1EmTKQ8Od6AyGY2i+xHn4VzeewaNikjl3qK0+nE/687iBUDpweLfvScbZjueOgOG4riSuQGR+bByX3+3r3WcYp36nj3EcIiB04doLbaw0hmN8jMfyU5DqvZ/1UWN6phD8fTrgycznw98BB46R3Smu0i1fG31dlOX9Xbl/Sa3Iv9TrS+uYRCppavYRQe/hZdx+dLvp8GaGm5sWJabYSbqgcz6XxL1Gt5yuB/wcMmtni4otw0rqfELxUcgrh332ydv2LhAD0lNiwkwgB7LWV8pWwxt1/nBzo7rs8KlHMbLqZ7Rnl+2bCJetjyszrC15ag1asHfqNu/82Nu9hQiByWGKZ/cXPZjY3qv3KEy6NPjuWtHgF4EQzm1fht9XjpYQT5Oc81ibPQzu/q+MJozaapxFqhR9LbNd+Qi1Pxe1qZnsCLwd+4O43J8e7eyH2Ob5eZkfrZTahpuiIcdbBpxPfi7WIhyUT1uHV0fslibx+mxBYkBheU77NbG/gOcB33H1dbPrhMr+jLDPrIuz/v3P3n8bm4YQ/mkmnEU6UX4tvv2gb/j9gjyhPtbjaY+1BY/nuifJUHF7rdizu3y+M1k1ZHuyK5tdtZgui/Be39bPHmzZyKqH2/ytl1sGNhOP8RYlpypWBzyK6suPujyfWwyXRfE5O/La6j916y9No+f+HsT9bXyAE3h+qZ7mRq9x9tytbDT42J7LPlivf6zn3FbfXyWY2s0r+SpjZUYQ/jdcAMxL5LTYjLFdOTrjscvfrCU2Yric0v3o70c2MZvYdM9uryiySx+B4iuPnV8uT1E5NR1rfTkJBU6tl0fvdZcb9KXo/ODF8vY9/l/GT7r49MeyphJPMW6JXOQ/UkM/fuXvJ3efunjOztYRajnjaO+JBWpR2k5kl81a0rtzA6PL1uYSbPg4lnKziFpaZrOS3uPu2EJOWbVawjXBZML7MQwg1+C8j1DCXzC4231vN7CpCTfppZvZbQrOD/3H3P5f7PTUobut7y4xLznOvKO8vJfwJKqcwzvCi4jr9fbWMRcHWxwjBSrnAawG7/8lMbost0bZYxMQdTPhd5faZewj7+6g68l3Puh/P3oQAodZ5HEFY/+XSFy2pcdn3VFjmaBlS6/pw9w0Wej34EPAXM/sD8BPgf+N/WKN5vo7QROtoQvOuuHLHaNwR0ftuf7RjkuugXBlYc1k6yWO37vLU3deb2fsITSd2Aat896YKtRivnGzksTmRfbZcvus59/034UrAhwnNcH5DqGz5b6/SNI6x/euC6FVLfmGSZZe7/xL4ZVQhchjwQkKTvlcR7tl4WYXJi9uqWgBda0AudVCg3fr+BLwgag9YLXiF3QPHWgzUOa64jG8wfjuuXRPIR5rG+02fIlxG+x9C8LuJcCl8JaENbbmrPOP9CanaBZKZzSXUEM8B/gP4I+ESZoEQcJwQT+/ubzKzSwht5J5HCDb+xcze4+7/WW155bJQnHWFccnvPyasi4motLyxROFk8UPCSeuzwG8JhXuecJPmGyizLSr8IZzIfl/LtCXj6sx3Peu+2vIrrs9EeifcdzDeuioXiJRTNd/1bkd3P8/Mvkq4qe/5hHsV3m9mn3T3D0bzfA3h+LyDcNPuI4SmIN2ENrzVrsQW8/hGwpWwcpJlaaVyriaTOHYnWp6+MnqfRQjW768nv5HdfncTjs2J7LOT2l7uPgS8xMyOJQSoLyC0nT7fzN7g7t+qkl8IbfbL3idBqHBJLjOVsiu6mrUOWGdmXyOsm5ea2QGe6JEkpvhHY+U440mM/2M9eZLKFGi3vhsIhcA/EP59V7M+ej+SUFsU97TovZaAvZL7CQXj9HLNM2r0APBUM+uJ12pHNc7LE3l8CDjUzLritdpRrcuCOpd7BvBzd399fKCFvsqz8CJCTyd/7+4ll6ajG4B24+5/IhSMnzSzBYQmJheZ2eeKzV7qUNwfjmDsUiWxYXFPEtqjzpvEdr2PsG8cXSXdMwg3D13o7h+NjzCzf5jgsosmso5eStjvkif0wxPf68l3fN0nlRtWziZCu9Ny6Z9WZth9hKY7D7t7uRrpepSbfzEfxeOz7u0YVRhcBlwWXba/GfiAmf171IzhDEJg/UIv7YIsuS3Gc1/0vnkS+zGUlqVJZcvSCR67dZenZnY2obb5IsLN3Vea2TPcPf7Hot7joCjLY7OctPbZus997n4H4Q8dZvYUwpW4jxGa5FTKL0B+kvvXpHm4gfEPhJr6/Qk325dzG+GGz5PNbLG7b04miI7F0wnH3vezyXFnUhvt1vdlQjvRc8zs5HIJzOxZFu62hnAndT9wtpntEUuzB6Emt4+xXh8mxN23EG54e42Z/XWZ/FgNbca+TWiqkCy43xoNjxd0NxJucFqVSHtOHdkuyrN7rdwc4L0TmFety6PMMl9Koq2phfbiJcdk1GznQUL7yLraEkZ+RKgNe6eZzY4t6wBCzVR8WQVCu+1jzexUyqjUtjaax1ZCIX2imSXvBSjWlsH46+XplLbPn4hiP8BV+5aNfCd6L+mJwsKT0p6aSFtzvqOg8TeEk9vyWNrp1Li/RbVg3wWOMbMXxuZhlH9A1dej90+YWXdyZLXtl3BatJ8k813ME9SxPsxsvoU+f0d56AO7GFwVm4TkCUFiV2xaA86rMd/XEbqqu8DCcwhKRPmYUcN8VhO62nuzme0Tm34aYV9xon1nMsduveWpma0gtBH/KaGnjtcTLvl/PZGHeo+DoiyPzXLS2mdrPvdZaE+d9CihsqHa+vo94c/UWWaWbIaJmfVYuFclNWb28ljZGR++F6FHkRxjfwB2E9Xg/19CM7RvJI+LaL1/nnDT+yXl2u3LxKlGu8W5+4CFp0J9j9BF0Q8JhcUWQkD6QsKlr09G6beb2QcIXRzdbmZXRrM6k9B+9u1eodu9OryDcOPHzy20Tfw94cR4MKGm5Srg/ArTf5Jw1/XnzGxlNP3RhDaKaym90etiQlD4X9GlvnsJl2b/hnDjZD01N9cDbzez/yE0kVhCuHt7Sx3zqMcviboGs9Dt3aPAMwm1dn8EjoqlfSOhveC3CLVcI4R+ul8GXFe8QaweUXvyjxBuHL0t2lazgbMIBXOy5vlfCOv1OjO7jhAoDhMK4L8F7iTsS5W8i1CD8v3o0uadhMvbzyZcnfggIbi6m1CTWezNYDnhJp8/Uf0SZyV/JjTP+UczGyDU0m9y92SNPgDufrOZ3Qi8KTpB/oDQvV8xL0+PJa833+8j9N7zKzP7HGPd+9VT9p5HuKz+XTO7jLAPnUQ4/pO/5bdm9lFC29E/mNn/Evpj3pdwc9/fEnqtqMU6QhlyOWF9voHQzd6/unuxG7h61scLgSvM7IYoXV+Up38Abnf34o2n1xN6P7gl2l+nEW5YnU0N3P1RM3sHoZLiHgtPu9tAWF9HRfN6GmFfrDSfvJm9i/Cn/7dmdkW0Hv4PoavKT7h7MbiZ7LFbU3kaVQr8d5SP06M/x783sw8Sbrb7IOHhJlDncRCT5bG5m7T22TrPfedFlR3fJfwZMsIxdTjlbzKOL8fN7AzCFcK7LDSFupuwfx5KuMLwIUJvI2m5Hthk4bHqfyYE1gcTziNLCFcftlbJ9xUW7hf6APDnaD97iNDt3yrCsfENxm93LhPlLdD1iV7VX4SD+L2EwngboSDfSAjAz2D3h62cQgh2+qPXbcCry8z3IRLd48XG/Qx4qEKeFhNqVooPtNhOCB4/Azwtlu5MEt3IRcP3IvyLfjT6PY8SCsnFZZa1jNCvcS/hxo7vRMNKusiL0jrjdEMXrcdLCCfeQUKweS6hiUeyW6ay+a60DMo/4OQZhOBtW5T/nxHap5akJQTgXyOcqPuj37mG0NZzxiT3n7cTTpjFB9a8h/EfWDOb0JftHwm14b2Ek++XqP0BC/sTuqAqPnxjI6Hd54tiaQ4k9Fv8JKHN5R3Rfnt+lK+DKq3XStuCcHJeHW1jp/oDa2YR2lw+Ef3m3xKCpHLbs+Z8R+lfQDj+BglNQT5H/Q+sOSpaf8UH1lxN5QfWvILQJGNrtM0fIVxpeEcNyzo+mu+ZhG7Q7ovmcR/wT2XS17Q+CMdrsR/8ndFvuYfQNnZ+Yp5vJQQUg4R21lcQahrLbevx1sHfEILkTYw9AOanhONpZizdQ4xTBkbjjyNUbuyM8vN7du8K8JlM8tilhvKU0Ld9AfjbMtN/l1COxh/gNN5xMLqNx8lLJscmlR9YU9M+O972jo2veu6Lfv//RNt+V7TM2wl/+nbr/rXCOro8mscwobLmTsIfnadMtOwaJ91rGXuuQfz8/33CE6PjaYtt3r9T4fi+gbEH7TwZzafsA7f0mvzLohUvMuVY6HJqM/BFdz+r2fkRaQdmdjwhIH2zu1/Z1MxUEV3yzhGelJhF+2FJUVSjej/hCbpl71GRybHQXeR2QteNb2pydgS10ZYpolxbS8JlUphkm3MRmbL2i97VpnRq0PbKXrGdv3oOaRFqoy1TxffNbAPhwQzdhKYeryRcFvx2E/MlIk1gZm8mXFKH0ORAWlTUtnwV4R6cPLv3CiKTZGbHAc8lNAvsZ/cHvEmTKNCWqeJGwg1Hrya0p32U0Kb2Ah+/f1IRaV9fJtzI9i53v7XZmZGKivfj3A+83t3XV0kv9XsvoZvS3wHnuvtjTc6PRNRGW0RERKYcM/s+oQ/u3Z5TINIq1EZbREREphQzWwK8mNALyxlNzo7IuBRoi4iIyFSzihDDfAo4Lv5wJZFWokBbJMHMfmlmN5UZfrqZDVl2j2sXEZHanEF4JsGnou8lT7pVOS6tQoG2yO5uA46NDzCzuYQnVH7K3e9vSq5ERAQzO4LwhMpr3P0vhH7fk81HVI5LS1CgLbK724BF0cMVij5CeOLWx5uTJRERiZxBeHrkDdH3a4Cnm9mKWBqV49ISFGiL7O626P1YADNbTuib9IPu3hcNm2FmH2hO9kREOpOZGXAacJO7b48G30B4zPzpsaQqx6UlKNAWSXD3TcB6xi47/gewGvhGLNnRwEmNzZmISMd7AbCUUIsNgLvvAG4C3mBmXdEwlePSEhRoi5T3a+BYM3sVoZ/Wd3vU6byZHQV8CzjUzP5gZv/UxHyKiHSSM4CdwHcTw68mPOL9hNgwlePSdHpgjUgZZvYOwpMn/wLc6u5/nxj/JeBX7n5lE7InItJxzGwm8ATwLXd/c2LcDGAj8G13PzMapnJcmk6PYBcp7zbCo973Aj5UZvyzgMsamiMRkc52EjAf2GRmry4z/m7g78zsH919AJXj0gIUaIuU92T0fqG7b4yPMLPpwCHAnxueKxGRzlXswq/aDYwnA9eiclxagJqOiJRhZl8Gngc8w92HE+MOBX7o7gc3JXMiIlKVynFpBarRFomY2SzgKMJNM2cCJyQL58gG4EEzuwe4yt3/rXG5FBGR8agcl1aTeo22mb0eeCewApjt7hWDeTN7OeFmhYMJXfG8z91/mGqmRGpgZq8AbgQeAT7i7lc1OUsiIlIHlePSarIItF8G7Em4AeGKSoG2mR0M/Al4G3Ad8FrgCuBId38o1YyJiIiIiDRQZm20zex44MdVAu0LCJd1nh8b9otougtqXM4iYFH0dYu7b5lwpkVEJHMqt0WkUzS7jfYK4M7EsNXR8FqdDXwUYNasWRxzzDGjI/742I6ShAY8ff/5E8mniEjm7rzzzs3uvlez89EAKrdFZMqrpcxudqC9B7AjMWw7cGQd87iM6FGsy5cvX/u73/1udMTJ//lL1jw6Nvtjl+3JdW9/zkTzKiKSKTPb0Ow8NIjKbRGZ8mops5v9CPZeQufzcQsIj1etibtvcfd17r6up6f0f8O5Jx4++nnFAfO59NR6KspFRCQLKrdFpFM0O9BeA6xMDDs6Gj5p+y2YNfr5s6uOZumi2WnMVkREMqJyW0TaSeqBtpl1m9lMYHr0fWb0sjLJrwKOMbNVZjbNzFYRHon6tbTzJSIiIiLSSFnUaJ8B7AJuBrqjz7uAA83sNDPrKyZ09/XAa4DzCM1FzgNOUdd+IiIiIjLVpX4zpLtfCVw5zuiHgKsT6X8A/CDtfIiIiIiINFOzex0RERERSdXDWwY45/o1rN6wjZUHLuTSU1eovb80RbNvhhQRERFJ1TnXr+GOB7eSKzh3PLiVc65PpY8Fkbop0BYREZG2cueGbSXfVye+izSKAm2RKh7eMsDrvvhrDv3wTbzui7/m4S0Dzc6SiIhU8PT95pV8X3ngwiblRDqdAm2RKnQJUkRkatGDj6RVKNAWqUKXIEVEphY9+EhahQJtkSp0CVJERKTzpNF0VIG2SBW6BCkiItJ50mg6qkBbpApdghQREek8aTQdVaAtIiIiIpKQRtNRBdoiIiIiIglpNB3VI9gT9NhWEREREUmj6ahqtBPUZ7KIiIiIpEGBdoL6TBYRERGRNCjQTlCfySIiIiKSBgXaCeozWUSyksbDD0REZOpQoJ2gPpNFJCu6B0REpLMo0BYRaRDdAyIi0lkUaIuINIjuARER6SwKtKXjqJ2sNIvuARER6SwKtKXjNKKdrIJ5KUf3gIiIdJbUA20z6zazS8zsSTPrNbMbzGzxOGmPNzM3s77Y67a08yQS14h2srrpTURERLKo0T4XOBl4NnBANOzrFdLn3X1u7PXcDPIkMqoR7WR105uIiIhkEWi/DbjY3R9w9x3AB4CXm9lBGSwLM1tkZsvNbHkul8tiEdJmGtFOVje9iYxP5baIdIpUA20zmw8sBe4sDnP39cBO4BnjTNZtZo+Y2RNm9j0zqzfqORtYC6zdtGnTRLItHaYR7WR105tIRSq3RaQjpF2jXazG25EYvj02Lu5e4JnAMuBw4C7gFjPbr45lXgY8FXjq3nvvXU9eRTKjm95EKlK5LSIdIe1Auzd6n58YvoBQq13C3Z9w9zXunnP37e7+IWArcGKtC3T3Le6+zt3X9fT0TDTfIiLSICq3RaRTpBpou/t24GFgZXGYmR1MqM2+q8bZFABLM18iIq3I3ckXnOFcgZF8odnZERGRlGVRlXAF8EEz+ymwBbgYuNndH0omNLMTCIH5A8Bs4BxgCXBzBvkSmTLcHXfw4meIvofhRN8hDKt//onvZZY/3vjktBNYfGLySc6gOJ90ZlM6z9F5+27D4sssRAFzwZ1CAfLRd3cf/VwowGPbx/pT/8Mj23l8++Do90Vzp6f/A0REpKmyCLQvAhYCvwVmAD8CTgcws9OAL7r73CjtCuC/gMVAP7AaeIm7P5JBvkSabiRfYChXYDhXYCiXZ2gkfB/K5RnKFaLgrNm5lFps3DnI5beu576NfRy2ZC5nHXcIS+bNrDjN4MhYrbW2s4hI+0s90Hb3PKFm+pwy464Gro59/zTw6bTzINJsw7mxgGr9k31sHxgZDaSlPVx+63rufSLclnLvE71cfut6PnrSkU3OlYhI+yhe3S24U4jeofS7e0hXGE2XmKYQ/z52hbjM0nYb8vj2XaOfH9rcX3Ju7+6qrZWz7kIRScngSJ6t/cNs7R/m/k19o8N37soxa5oOtXazbmNvyff7NvaNk1JEpDIfbX42FhAWv++euMq8GGt6WJx3vPkho80Sx9LmE8FooULwmpx3PEtjAawnvtcnHkQ309b+kdHP2wZGmN7TPfp9eo8CbZHM7RrOs6V/iK39w/QP5ZudHWmgZYvnsP7J/tHvhy2ZWyG1iLS6QsEZHuem5HjAF7+vpBAFqYVCuB+j+J7Le8m9G/kCY/dxxO/piAW50p4UaIvUqX8ox9b+Ybb0D7NrWMF1p1p17FI+9r17ADhkrzmcddwhTc6RiEzEUC7Ppp1DbNw5yEheEa+kS4H2JD28ZYBzrl/D6g3bWHngQi49dYUeTtJGCgVnIBZM3/34ThbOVu8QAovnzhj9fPYJh1W9EVJEWsvOwRE27hhkS/+wapQlMwq0J+mc69dwx4NbAbjjwa2cc/0arnv7c5qcK5mIoVyegaE8AyN5dg3n6B/Ks2skzxM7xrpgi98IISIiU0uh4GzuH2LjjiH6hnLNzo50AAXak3Tnhm0l31cnvkvjFWJt3+I3dhTc8QLsGBi7ueGRbbvoG8qxazivS4YiIm2q2DxkU+8gwzmV9dI4CrQn6en7zWPNoztGv688cGHmyywUwq0Y8buASXx3wAvhpo343cPFu493u4N4nBs9YPyHm8TvZGa3u5xjdz4nHrQSHx+ff/HhLGOfd19qaT5L81f8jdVs3DlWQ725d4hu04NIRUTa1UOb+/nLjkE1D5GmUKA9SeeeeDirvnQ7AEftP59/PflIdg6OkM87uUK4s3gkH/pPLn7PFQq7BaDxJwDC7sFrPCgWERGZyord2RXPi3n3kvNmrlCgUIBcofT8mXwi7ngVNfEmf9sGRlgyrxuRZlCgPQHuTv9wnt7BkZInvb3lecvY2j9S0u+iZG8iT+gTEekU8QqeeD/Io1cBY5U+8Qd6JK9uVuWMBc7F4Dn2vWRcxg/v0v000ioUaNegGFjv3DXCzsERegdz5KL2vDt2KahuNj2hT0TaTfJek2IQnI/uNSl4ae1vLqoNjn/OR5/1QFqR5lGgXcETOwcZGM7TNzQWWDdavbW1nVi72w5P6OvE7SYyFeXyBXLRg01y+dA0MLycXL4wOjxXrCqu4omdg3zulvtZu7GP5Uvm8o7jDmGvPXTsi7QLBdqEGuveoRy9g7mSR2f/ZfsghXlNzBj119Z2Yu1uOzyhrxO3m0ircHdG8iF4HsmFwHkoNxZAD+cKjBTCuLRrhy/7yf2jx/49f+nl8z/TsS/STjo60N4+MMzj2wfpG8qNthfrHWytfjXrra1th9rderXDE/o6cbuJ1GvXcJ5NvWM3ucVvhAvfx6LgZK9E8aHukPcogI6C6WbdaN6IY19XzDqDtnNr6uhAe+euXMPbWNd7INRbW9uI2t1WO5jb4Ql97VArL5K1wZE8j28frJ5wCmnEsa8rZp1B27k1dTU7A52meCDk3UcPhEpWHbt09HMttbX1pp+Ien/Dxp2DXHDj3Zz+5du54Ma7S/qxlqAR201EWk8jjn1dMesMWW9nncsnRoF2g9V7INRbW9uI2t16f0O9gXknaoda+alOJxFphkYc+8sWzyn5PhWvmOn4rC7r7axz+cR0dNORZmiHJgL1/oZ6A/NWa5rSDtR7TXW67Do1deK+Wq92uI8l6+OzHfajrLdzO1wZacZ2Vo12g7VaE4GJ1BLU+xvq/Zetf83pq3edduI2aIeTSCfqxH21Xu1wxSzr47Md9qOst3M7XBlpxnZWoN1grVbgTWSnq/c31BuYK+BJn3qvqa4dTiKdqBP31U6U9fGp/ai6VqsonIhmbGcF2h2uETtdvYG5Ap7q6r0SUe86bcQ2aLU2l+1wEulEKi86Q9bHp/aj6lqtonAimrGdFWh3uFYsXBTwVKfea9IPzNvhJNKJWq28aLU/kO0i6+NT+1FnaMZ2Tj3QNrNuM7vEzJ40s14zu8HMFldI/3Izu9vMdpnZn8zspWnnScbXaoULKOCphXqvmZptKCV9rVZeaD+dmrQfdYZmbOcseh05FzgZeDawBfgq8HXgxGRCMzsY+CbwNuA64LXAt8zsSHd/qN4FD+cKbNgy1hvGY9t2lf1c9Pi2QTb2lv5L3Nw3VPbzeKZ6+rhi0F3tn3Or/YZWS9+IZRywcDYPbx0Y/X7Q4tkVt1sj96Na1fsbkoH5uo29VX/ztXc8zIOb+1m2eA6rjl1aUsiWS1/uc1rpq00zlMvXNI92U0+5vWNgZLdt3oh9tR4T2U/LfU7TRPbteo6dRmjFcj5L9e5HkP1v0H5Umn5at9W0TPOUnztrZhuAC939K9H3Q4D7gWXJ4NnMLgBOcPfnx4b9Avixu19Q4/IWAYsApu9z6Np93/QfafwMEZGG23DxK+9092OanY+sqdwWkXZQS5mdatMRM5sPLAXuLA5z9/XATuAZZSZZEU8bWR0Nr9XZwNroJSIirU/ltoh0hLSbjsyL3nckhm+PjYvbY5y09fRCfxlwDcAhi2ev/f77j695wnJNR0RkYt533R8oxC6QdRl86nXPbFp+LrvlvpIHKx2y1xzOPuGwpuWnmgWzp/HCi5udi4aZULm9Y2CEBzb3V09Ywea+odGHepz3iiOqXsquN30jZJ2neo+ddlin9WqH36z9aHKmdRuvrKHMTjvQLjYqmp8YvoBQq10ufa1py3L3LYS24BxzzDEcuGhOlSnGGAa1NbERkSqWL9lj9Mltxe/NvKHo7BMOm1JPels0d3qzs9AwEy23t80cpn84vbbsi+fOqGufqDd9I2SRp8kcO+2wTuvVDr9Z+1H9pvfUFkCmGmi7+3YzexhYCfwBRm94nAfcVWaSNcALE8OOBn6SZr5EJHtnHXfIboVqMy2ZN1OPUBeZAB07kgbtR0EWvY5cAXzQzH5KqLG4GLh5nF5ErgLeb2argOuBU4FnAW/MIF8ikiEVqiIiIqWyeGDNRcCNwG+Bx4Bu4HQAMzvNzEY7y41ulHwNcB6huch5wCkT6dpPRERERKSVpF6j7e554JzolRx3NXB1YtgPgB+knQ8RERERkWbSI9hFRERERDKgQFtEREREJAMKtEVEREREMqBAW0REREQkA1l07zdldHfraTUiIlNFV5cxvSdePxQeReqeHJIYFn1x0EPKRKShOjrQ3n/BLPbeYwY7d42wczBH7+AI/UPpPXVMRETSM3/WNJ514MJJzWPDlrFHQj9tv3ksmTeTkXyBkXyB4Vzx3RmOhomITEZHB9oA07q7WDR3BovmzgBgJF+gdzAXBd8jDAznS2pGRESkPczo6WL+rGkV0yyeM/roB5YtnsM+84uBuZOL3kfyBXKF8FnnC5GJ2dw3NPr5slvu4+wTDmu5R9VPRMcH2knTurvYc8509pwzHYBcMfAeHGHnrhz9wzkVpCIiHaKra6ytyYLZ0yqe+N2dXKEYeI9/ohjvHOLuFBwK7hQ8BO2F4rDC2PdcYaymfc6MbmZP7yZXKJDLh7QitWi1wPbaOx4e/bz+yX4uv3V9xacNt1r+x6NAu4qe7i4WzpnOwjKBd+9gjr4hBd4iIgJmxrRuY1p3tv0MWKyd+fIle3Dgojmj3/MFHw26cwUP36PAvxi8u4MzFrg7xeA/BOrx8bUYGM6Nfp4zo5tZ07vJFwrkCyE/0prqDWyz9tDmgZLv923sGydl0Gr5H48C7TolA+98wekdHGE4Vxgr1ApOvhC+jxV2qm0QEZFsdXcZ3V3dzGjg2X37wPDo5/+85X4uW7WSpYtmA6GWvnheLEQ1/r27RkbTf/Hn6zn/pCPZe97MkvNmMW0+ek31Cq1WrH2tN7DN2mFL5nLvE70l3ytptfyPR4H2JHV3GQtmT685fSFW4EBpzcHY3fKxGoYyNQ+FKHHx8+i4WE1EqJUYex8vbck8Y0q/lh9XzGNJfkVEJFOPb981+vnd1/6+JLBthou+f+/o5zWP7uCc69dw3dufA4Ra/p5uo6d7LP3nfnb/6Od7/tLLv/9o3Wj68eTyBfJeGnAXz3fFz1B6Hi04bOsf5sm+IXL5dE9Q9QbOrVj7Wm9gm7WzjjuEy29dz30b+zhsyVzOOu6QiulbLf/jUaDdYF1dxvSu9u1fykv+QJQG4clLkWMFY+k0xKZLpo0mKJkuPu14bRtHP7uPFsAj+QK7hvOMpFwAi0j7aLWgFioHts1w9+M7S76v3rAt1fQQriZPJGCZP2saT9lzNk/2DvHEzkF2DafTs1i9gXMr1r7WG9hmbcm8mXX9+Wi1/I9HgbakyqLGg2NtCFv/T8VwLgTc/cM5BobzDAzn2DWcVzMfkTZUb+DcakEtTCxQzdLKAxdyx4NbS76nmX6yuruMfebPZJ/5M9k+MMxfdgyyfWCk+oQV1Bs4t2Lta72BbauZKvnXkyGl403v6WL+7Gnst2AWh+49l2ccsIBjl+3JiqfM57Alc9l/wSwWzpnG9J7W/9MgIpWVC5wrabWgFnYPTLMOVKu59NQVHLtsT3q6jGOX7cmlp65INX2aFsyezhH7zuPopQvYZ/5Muid4hTkZKFcLnM867hAO32cPus04fJ89Wrb2VdKnGm2RMsyM2dN7mD29B2LlZ99Qjq19w2zpH2JwRA+zEJlq6g2cG137WotLT13BOdevYfWGbaw8cGFDA9Vyli6aXVctf73pszBzWjfLFs9h6QSbldTbbGGq1L5K+hRoi9Rh7owe5s7oYemi2QwM59jSN8zW/mEGUmr3JyLZqjdwbrWgFlojUG0XyWYlA8P5xP1BpfcCFR2wcBZfeuMxFKJeVcI7sc9O3n20AwR1FtC5FGiLTNDs6T3M3rOHp+w5m13DebYODLO1b5i+oVz1iUWkKeoNnBXUdo4Fs6ezIKP7XAtR4F3sqjAf3bgfbtYfC9AL8TSxHsrKGW/M2CQe65gg1sNZonOCsc4DxnoqyxfUm1haFGiLpGDW9G72nz6L/RfMYnAkz7aBUNOtXk1EWosCZ2mGri6jC2Nad/W0rWT3XrsSQXqUbrTHsdHvlCaoQ7xL44KX+Z7oqjg+fLwnq3qZ9/LLHidPkziNK9AWSdnMad3sO38W+86fBYRaiaFcnqGRAkO5AkO5PMO5+GcF4iIi0nqKfxBk4hRoi2Ssu6t4Y2X58YWCjwbd8ct1ztiDiZIPNir+o5+o5LSe+B+/+/jk9F5xfFr5Ss/EZlzS73uZ4cX1li84hUKoPSm2y8wX9CRYEZFOp0BbpMm6uoxZ07uZNX2KXVOUqoqXKZPtL3cLyt2Z0aPtLyLSblINtM1sNvCfwCmEJ5XcALzL3XeNk/5M4KtAvOf3G919VZr5EhFpBjOj25hwX70iIjK1pf3Ams8Ah0ev5cARwKeqTPOAu8+NvRRki4iIiMiUl1qgbWazgNOBj7j7RnffBHwEeJOZzUxrOWWWu8jMlpvZ8lxO3aqJiLQ6ldsi0inSrNF+KjATuDM2bDUwi1C7PZ6nmNkTZvaImf23mS2rc7lnA2uBtZs2bapzUhERaQKV2yLSEWoKtM3sSjPzCq+PAXtEyXfEJi1+njfOrH8OHAXsB/wVMAj8yMzm1PEbLiME+U/de++965hMRESaROW2iHSEWmu03wXsVeH1CaA3Sjs/Nl3x885yM3X3B9x9nbsX3P0J4K2EoPuva/0B7r4lmse6nh51oiIi0upUbotIp6iphHP3PqCvUhozW0uokV4J3BINPhrYBayrMT8evXSLvoiIiIhMaam10Y668PsGcKGZ7W1mewMXAle5+2C5aczsFWZ2gAV7Ap8DNgO/SStfIiIiIiLNkHb3fv9EqL0uvtYC7y2ONLMPm9ndsfTHA3cQasvvBhYBL4lq0EVEREREpqxUG8e5+wDw99Gr3PhPENpzF7+/H3h/mnkQEREREWkFaddoi4iIiIgICrRFRERERDKhQFtEREREJAMKtEVEREREMqBAW0REREQkAwq0RUREREQyoEBbRERERCQDCrRFRERERDKgQFtEREREJAMKtEVEREREMqBAW0REREQkAwq0RUREREQyoEBbRERERCQDCrRFRERERDKgQFtEREREJAMKtEVEREREMqBAW0REREQkAwq0RUREREQyoEBbRERERCQDCrRFRERERDKgQFtEREREJAOpBtpm9m4zu93MBszs/hqneaOZrY+mud3MnpVmnkREREREmiHtGu3HgU8CH68lsZk9D/gC8A5gIXADcJOZzUs5XyIiIiIiDZVqoO3u17v7DcBjNU7yVuCb7v5Ddx8CLgGGgFNqXaaZLTKz5Wa2PJfL1Z9pERFpKJXbItIpepq8/BXAlcUv7u5m9vtoeK3OBj4KsGbNmgEzuycxvhtYAmwE8pPKbfvSOqpO66g2Wk/VVVpHBzY+O02hcnvytI6q0zqqTuuoukmV2TUF2mZ2JfCmCkk+7u7n1TKvhD2AHYlh24F6mo5cBlwTfd7i7lviI81sObAWON7d100gj21P66g6raPaaD1Vp3UEqNyeNK2j6rSOqtM6qm6y66jWGu13AedUGD9Q74IjvcD8xLAFwPpaZxAV0FuqJhQRkZagcltEOkVNgba79wF9GSx/DbCy+MXMDHgm8M0MliUiIiIi0jBpd+/XY2YzgWnhq82Mvo/nS8BrzOxFZjYd+GdgJvCtFLO1BbgA1Z5UonVUndZRbbSeqtM6qk7rqDqto+q0jqrTOqpuUuvI3D21nJjZ+UQ3uMS5u0XjPwyc5u5HxqZ5I3A+sC/wR+Ad7n5napkSEREREWmCVANtEREREREJ9Ah26Shm9n0zczN7c7PzIiIiY2otn1WOy1SiQFs6hpktAV4MFIAzmpwdERGJ1Fo+qxyXqUaBtnSSVYR9/lPAcWZ2QJPzIyIiQa3ls8pxmVIUaEsnOQP4GaGABnhDWjM2s1+a2U1lhp9uZkNmdmhayxIRaUO1ls8qx2VKUaAtHcHMjiD02X6Nu/8F+CnpXna8DTg2scy5wMXAp9z9/hSXJSLSNmotn1WOy1SkQFs6xRnAEHBD9P0a4OlmtiKl+d8GLDKzQ2LDPgIY8PGUliEi0o5qLZ9VjsuUo0Bb2l70xNHTgJvcfXs0+AZgEDg9lu5iM3swupv98NjwRWZ2k5ndY2Z3mdn/mtmeicXcFr0fG02zHHgP8MHoyaqY2Qwz+0AGP1FEZEqqo3yuKV2UdqJledVyPBquslxqpkBbOsELgKWE2g8A3H0HcBPwBjMrHgf/L0q7ITG9Axe5+xHu/gzgIRK1G+6+CVjP2GXH/wBWA9+IJTsaOGnyP0dEpG3UWj7Xmg4mWJbXWI6DynKpgwJt6QRnADuB7yaGXw3sB5wA4O6/cvdHkhO7+1Z3/3ls0G+AZWWW82vgWDN7FfBy4N0ePRHKzI4CvgUcamZ/MLN/muRvEhFpBzWVz3Wkm2xZPm45DirLpX4KtKWtmdlM4FTgm+4+mBj9PWAHicuOVeZnwFnAjWVG30ao6fg0cKW7/7Y4wt3/SDhBfMjdn+nun6nrh4iItJlay+e0y/Fo2eOV5eOW46CyXOrX0+wMiGTsJGA+sMnMXl1m/N3A35nZP7r7QA3z+yzQC3yhzLjbgFnAXsCHyox/FnBZLZkWEekANZXPhN5F0izHYfyyvFo5DirLpQ4KtKXdFbt+qnbjysnAtZUSmNklwGHAq9y9UCbJk9H7he6+MTHtdOAQ4M9Vcywi0hlqLZ+/XGO6quU4VC3Lxy3Ho2lVlktdFGhLW3P3V6UxHzP7OKH/1le6+/A4yS4E1hJqSpKWAlvcPZdGfkREprq0yud61FCWVyrHQWW51MlibfxFOpqZfQp4HbAPsBnY5O7PMLMjgT8B64BdUfL73f1UM5sFHEW4aeb/AickbrYpznsa8APCTTtXufu/Zf6DREQ6UL1lOaFmvWo5Hs1bZbnUJfVA28xeD7wTWAHMdveKteZm9nLg34GDCd3qvM/df5hqpkQyYmavINxM8wjwEXe/qslZEhGROqgclyxlEWi/DNiTcDPBFZUCbTM7mPDv8m3AdcBrgSuAI939oVQzJiIiIiLSQJk1HTGz44EfVwm0LyBconl+bNgvoukuyCRjIiIiIiIN0OybIVcAdyaGrY6G18TMFgGLoq9b3H1LSnkTEZEMqNwWkU7R7EB7D0JH83HbgSPrmMfZwEcBZs2axTHHHDM64o+Plc7agKfvP38C2RQRyd6dd9652d33anY+GkDltohMebWU2c0OtHsJndDHLSA8ZrVWlwHXACxfvnzt7373u9ERJ//nL1nz6FihfeyyPbnu7c+ZaF5FRDJlZhuanYcGUbktIlNeLWV2sx/BvobQn2Xc0dHwmrj7Fndf5+7renpK/zece+Lho59XHDCfS0+tuUWKiIhkROW2iHSK1ANtM+s2s5nA9Oj7zOhlZZJfBRxjZqvMbJqZrSI82vRraeRlvwWzRj9/dtXRLF00O43ZiohIRlRui0g7yaJG+wxCR/A3A93R513AgWZ2mpn1FRO6+3rgNcB5hOYi5wGnqGs/EREREZnqUm+j7e5XAleOM/oh4OpE+h8QnrIkIiIiItI2mt1GW0RERESkLSnQFhERERHJgAJtEREREZEMKNAWEREREcmAAm0RERERkQwo0BYRERERyYACbRERERGRDCjQFhERERHJgAJtEREREZEMKNAWEREREcmAAm0RERERkQwo0BYRERERyYACbRERERGRDCjQFhERERHJgAJtEREREZEMKNAWEREREcmAAm0RERERkQwo0BYRERERyYACbRERERGRDPQ0OwNT3cNbBjjn+jWs3rCNlQcu5NJTV7B00exmZ0tEREREmkw12pN0zvVruOPBreQKzh0PbuWc69c0O0siIiIi0gJSD7TNrNvMLjGzJ82s18xuMLPF46Q93szczPpir9vSzlOW7tywreT76sR3EREREelMWdRonwucDDwbOCAa9vUK6fPuPjf2em4GecrM0/ebV/J95YELm5QTEREREWklWQTabwMudvcH3H0H8AHg5WZ2UAbLarpzTzx89POKA+Zz6akrmpgbEREREWkVqQbaZjYfWArcWRzm7uuBncAzxpms28weMbMnzOx7ZlZXpGpmi8xsuZktz+VyE8570cNbBnjdF3/NoR++idd98dc8vGWgYvr9Fswa/fzZVUfrRkgRkSrSLrdFRFpV2jXaxXYUOxLDt8fGxd0LPBNYBhwO3AXcYmb71bHMs4G1wNpNmzbVk9eydHOjiEjmUi23RURaVdqBdm/0Pj8xfAGhVruEuz/h7mvcPefu2939Q8BW4MQ6lnkZ8FTgqXvvvfcEslxKNzeKiGQu1XJbRKRVpRpou/t24GFgZXGYmR1MqM2+q8bZFACrY5lb3H2du6/r6Zl8t+C6uVFEJFtpl9siIq0qi5shrwA+aGbLzGwecDFws7s/lExoZieY2aFm1mVmc83sfGAJcHMG+apJ1jc31tsGXERERESmpiwC7YuAG4HfAo8B3cDpAGZ2mpn1xdKuAH5CaHLyAPDXwEvc/ZEM8lWTrG9uVBtwERERkc6Q+jU7d88D50Sv5Lirgatj3z8NfDrtPLQytQEXERER6QxqHNdgT99vHmseHeuURW3ARTqPu+MOXvxMHTemiHSgh7cMcM71a1i9YRsrD1zIpaeuUHe6DeTu5AtOvlh2ORTcKUTllxfAcQoe0hY8fC+mrTp/yieKT+ujw7zs+Ebr7qqt1Fag3WDnnng4q750O5BdG3AVRhKXDOrqnh6i6X20UBt9Z/eAsXTZk8l4tdG7F7bxSYq/NZn/+OeCl/6m+Ili9DdFv6+QOMEkpyku00fzE183yXG7WzR3eq1rRqTjFJtdAqPNLq97+3OanKvW5+7kCk4u7+QKhei99HO+EALm4nuhAPmS72NlnIyZ3qNAuyU1qg04qDBqBHdnJB8KpFyhQL5Q+r1cYFr6fWw+QFSYFYO9seCuMDo+FiAysYBORGSqaedml+7lzwvFcbko4M0VQtAbf88XiuebKE10/hmJzke5vE4EzaZAu83UWxjFA8RiTR6MBW3EawIprbUs1uaRKBxGh49+Lg7P9oCvpbY1HpjG81xtnkXJWoC8/uaLiGQuy2aX7s5QrsBQrkAuXyAfq9UtFMaaTBSi93whNj4RJJc7v3ji3FqavryNOwe5/Nb13Lexj8OWzOWs4w5hybyZqf1maRwF2lNcyYHvzhH77MGfHh97NtDT95/Phi39ZS4dhXfFiSIi0uom2+yyUHAGc3kGRwoMRe+DI/kQYI/kW+5cePmt67n3ifAMwHuf6OXyW9fz0ZOObHKuZCIUaLeQ4r/q4XyB4VzslS8wki/s1m4qX/Dd/hW/+uj9RwPtQ/aaw5nPPYjHtw824deIiIikY7xml4WomcRI3hnJFUY/56LzZjGwHs5VjqRbrQZ53cbeku/3bewbJ+XEtdpvblcKtBssly+Mfn502y4GR4rBdJ6R/O6Bc70HwuK5M0Y/n33CYTpoRETa0GjPDlGzuHI39pZvOkdJm7lyNxUnklTNx2QU845T0lNF/OZjx3l0267RadZt7GVr//Doldo0tFoN8rLFc1j/ZP/o98OWzE19Ga32m9uVAu2MDecK9A6OsHMwR+/gCA9sHjtwnuwdossq37WqA0FEpPncd68IqaYQBcPFbtCKn70Q3vPuPLJ1gAtv/DN3PbaDo/afx7kvP4K9582IrlpScgWz2E44V+ZqZrt7sndo9HP/UJ65MwoVUtevETXI9Vh17FI+9r17gHB1+qzjDkl9Ga32m9uVAu2UDY7k2Tk4Qu9gjp27RhgcSRQGdRaOOhBERNIxki/QP5Sjfzg/2i53NAgujH2O3xxe/JyVC268e7Qy5Q+P7OD8G+9WZUoTNKIGuR6NuDrdar+5XSnQnqBCIbSn3jEwMjrsT4/tTL09tA4EkfahNpGNM5TL0z+UjwLrHP1DeYZzhZbbBqpMaQ2NqEFuNZ34m5tBgXYF+YLTP5RjcCTPYC7coRxe4SYL93DiLBrJp3spC3QgiDRKvQHYRAI2NQXLxuBICKgHhvP0DeUYGM6Ne/Nbq20DVaa0hk68v6kTf3MzdHygHe5KHuvqZ8OWgdFxdz26gyXzhipMnT0dCCITU28gXG8ANpGATbWXk7drOB/VUIda6v7hXF03xLXaNlBlikh76+hA+5GtAyV3MgNs7R9uUm5EJE31BsL1BmATCdhUezk52weGuecvvdUTVtBq20CVKSLtravZGWimTrtru5yNOwe54Ma7Of3Lt3PBjXeXNIURmcrqDYSXLZ5T8r1aAFZvegi1l0WqvaxfGmW2toGINFJHB9oyVuuXdx+t9atGwblMBfUGwvUGYBMJ2FR72XzaBiLSSAq0O9xELn9PJDgXabR6A+F6AzAFbCIiUk1Ht9GWibVXbLWbiaQz6CmpIiLtq9W63kyLarQ73EQuf0+kbarIZOlKisjEqLmfTAXtWsYr0O5wE6n1081E0gy6kiIyMe0awEh7adcyXk1HpG66JC/lZH3Zr9W6ZROZKto1gJH20oplfBrnNdVoi0gqsq4105UUkYlRcz9phnqbLDWijK83T2mc11IPtM2s28wuMbMnzazXzG4ws8UV0r/czO42s11m9icze2naeZLmUvvAzpB1rZmupIhMjP6kSjPUG6Q2ooyvN09pnNeyaDpyLnAy8GxgC/BV4OvAicmEZnYw8E3gbcB1wGuBb5nZke7+UL0LHs4V2LBl7LLDY7GnPj6WeAIkwOPbBtnYWxr0be4bKvt5PJ2WfiLTXHbLfaOXg+59opfLbrmPs084rKZlSTo29w1x7R0P8+DmfpYtnsOqY5eWFGppOGDhbB7eOjD6/aDFs1P9U9Vqx0Lax85QLl/TPNpNPeX2joGRSe9TE9luWWp0fopBd9rHZtblS9brqRP3i6yXkQxS123srbjfNeI315unSue1ad1W0zLNU348opltAC50969E3w8B7geWJYNnM7sAOMHdnx8b9gvgx+5+QY3LWwQsApi+z6Fr933Tf6TxM0REGm7Dxa+8092PaXY+sqZyW0TaQS1ldqpNR8xsPrAUuLM4zN3XAzuBZ5SZZEU8bWR1NLxWZwNro5eIiLQ+ldsi0hHSbjoyL3rfkRi+PTYubo9x0h5ZxzIvA64BOGTx7LXff//xNU9YrumIpK/ey4r3berlcz8N7aaW7jmbNz7nwIrpN/cN8bHv3QPAea84ouoly6zTt2Ke4s13ILTTrNR8ZyK/uV71bud2t2D2NF54cbNz0TATKrd3DIzwwOb+kmFZ76vvu+4PFGIXfrsMPvW6Z46bvhHHTtbL+NSP1pVcLq9WXrRi+ZL1MhpxHsk6T602/3rVu5+mbVq38coayuy0A+1i45f5ieELCLXa5dLXmrYsd99CaAvOMcccw4GL5lSZYoxhUFsTG5mEJfNm8rFXH1Vz+stuuW/088NbB7j+zkf56Em1/fdaPHdG1Rso4m2/rr3j4bpuuqhl/pOdJov0Z59w2IS7KJrIb67FZLZzO1o0d3qzs9AwEy23t80cpn94/LbsWeyry5fswb1P9JZ8b/axk/Uykm3jH9o8UHEZrVi+NHIZWZfxE9FqvzkL9e6naZveU1sAmWqg7e7bzexhYCXwBxi94XEecFeZSdYAL0wMOxr4SZr5kqnloc0DJd/T7r3i2jseHv28/sl+Lr91fdsHeEvmzWy535j1dhZJw1nHHbJbENnuDlsyt+TPRbXuAFuxfJH2V+9+2ixZ9KN9BfBBM1tmZvOAi4Gbx+lF5CrgGDNbZWbTzGwV8CzgaxnkS6aI5MGS9sGjAK81ZL2dRdJQDCK/8Q/P5qMnHdn0WrxGOOu4Qzh8nz3oNuPwffboiD8XMvVMlf00i+79LgIWAr8FZgA/Ak4HMLPTgC+6+1wIN0qa2WuAfyd0A/gAcMpEuvaT9pF1DdJU+Rfc7jqxplBkKlANdfriTRaLXdx2wp+2LE2V/TT1QNvd88A50Ss57mrg6sSwHwA/SDsfMnVlffA0IsBToVrdVCkkRUSS6i3jO7HJogRZ1GiLtLRGBHgqVEVE2le9ZbyaLHauLNpoizRUsmahFR7xnnWh2oq/WUQaQ8d/89VbxuuelM6lQFumvHI1C82WdaGa9W/WiVykdbVimVePdihf6i3jp8qNe5I+Bdoy5bXiJbmsC9VmdIEoIq2hFcu8erRD+VJvGd+JvddIoDbaMuW1Yi8i9bYDr/fGmqx/81Q/kYs0SyNuhG7FMq8e7VC+6GZuqVVH12hP6zGmdevRkFNdO1ySq7eGJ+vfrPaE0oq6uoyuFi+yG1FbO9XLPJUvU1M7NPlpho6u0d53/iz2nT+LXL7AYK7A4Eg+eoXPQ7k8wzlvdjalinaoWai3hqcdukAUqdf8WdP4q4P2ZGAkz8BQjr6hHH1DI83OVolG1NZO9TJP5cvUpN60JqajA+2inu4u5nZ3MXfG7qsjX3CGcmPB92ggnssznCvgisMlBa12KXiqn8ilfXV1GXNn9DB3Rg97A92xKu6li2ax5+wZ9A3lGBjOky80voButWO5Fal8mZraoclPMyjQrqK7y5g9vYfZ03cfVyg4Q1FNeN9Qjp2DI/QN5mhC2S5TnGp4RCZv0ZwZHLhozuj3XcN5+odz9A/l6B8Kn3P5bAtoHcvSrvQncmIUaE9CV5cxa3o3s6Z3s3BOiMQLBadvOEfvYI7ewRF6B7Mv2GXqUw2PSPqK5fPiuTNGhw2O5OkfyjGcL1DwUGYX3MkXPHz38L1QGPucLzi1luJLF83mE685CndwH5unrn7KVKc/kROjQDtlXV3GvJnTmDdzGjALd2dgOE/vYKjx7h0cUbtvEZEmmTmtm5nTuhu+3GLQnY8Ce48H9VHAn3cffc8XQrBf/Fx8FQP/fDQP9/AnIPlZJG2qEJoYBdoZMzPmzOhhzowe9pkfungaHMkzMBzaeA/nCgzn8wwVP+cKanoiItJmzIxuK21TnqViYF8SiMfq5ccLxpPDa6/Ln5iSPBbC8gqxqwFO8Q9F+GOSyzsjhQIj+QIjueizzpvSwhRoN0G1GpWR/FjQXQzARwqFcWs6Ri9tqqDJRCP6xRURSVMxsIcW7w8xJfmCh+A7X2Ak70zvGfvdc2d0M72ni5G8OjCQxlOg3YKmdXcxrbuLOTOqp40rCcTdGcmHz7l8gZGCk49qAooFUi7v5KLxqg0Yn7o0EhFpbd1dRnfXWCVW7+DYCfSwJXtw4KI5JR0YFN8Hc3mGol7Fpvp5UJVCrUmBdhvp6jK6MCbS/LBQKF5eLL3MGP/3Hx9WTAuUtgmMXZ4sDounTct4cxu9POrs9jtGs1jhxqRywx/akujSaFMf82dNI1cokCsU/8xM8RJaRKTNxTswKGcolyeXj7WVH203T+yG2fh76Y2uyXNf8XO5c+LYeC8zbPQTPtquv/rvU6VQa1KgLUAogILOuMxYj2cduJA7Htxa8v1p+80rSePuY0F37OpBSQGcKGTLFc5O+NMDlNwwNfonyBltt1go1PZnqHR59f8hGJuXbrYSkfY1o6ebMo/TaAnxc0zxPFMovkfjylUKzZzWFV25VqHdLC26S4m0jktPXcE5169h9YZtrDxwIZeeumK3NGbGtO6JXU2YqoqBf/JKSE3TTvIGq3LLSf5xiQ8rxPOX/PMSjY9fBUn+uYn/gYnPq9wVoOTVoFr+/LhDl+lProiUV8s5plyl0NFLFwKlgfpIvtiEtBi0F0ZrzuM938Rr8kMvN7vX4kt1CrRFqli6aDbXvf05zc5GyzEzxmJDBYkiIs1UqVIoHqin0b3l2BXW8r3DFCswvBClr7NypeRKbWK55YfX/RMmrdYOhBRoi4iIiExxjawUKla0dKmSpaquZmdARERERKQdKdAWERGRtvL49l2jn9997e95OHGjoEijpBpom9lsM/uqmW0zs+1m9hUzm1Uh/ZlmVjCzvtjr2jTzJCIiIp3lou/fO/p5zaM7OOf6NU3MjXSytGu0PwMcHr2WA0cAn6oyzQPuPjf2WpVynkRERKSD3P34zpLvqzdsa1JOpNOlFmhHNdenAx9x943uvgn4CPAmM8vs0URmtsjMlpvZ8lwul9ViREQkJSq3JWsrD1xY8btIo6RZo/1UYCZwZ2zYamAWoXZ7PE8xsyfM7BEz+28zW1bncs8G1gJrN23aVOekIiLSBCq3JVOXnrqCY5ftSU+XceyyPcs+/0CkEWrq3s/MrgTeVCHJx4Gbo887YsOLn0sfozfm58BRwP3A3sBFwI/MbIW799eSN+Ay4BqAvffee22N04iISPOo3JZM6fkH0ipqrdF+F7BXhdcngN4o7fzYdMXPpY2lIu7+gLuvc/eCuz8BvBXYD/jrWn+Au2+J5rGup0fdgouItDqV2yLSKWoKtN29z903V3gNEC4DDgIrY5MeDewC1tWYn+gByeoBXUREqlM3biLSylJro+3uu4BvABea2d5mtjdwIXCVuw+Wm8bMXmFmB1iwJ/A5YDPwm7TyJSIi7UvduIlIK0u7e79/ItReF19rgfcWR5rZh83s7lj644E7gD7gbmAR8BJ370s5XyIi0obUjZuItLJUA213H3D3v3f3BdHrLVFNd3H8J9z9yNj397v7fu4+x933dfdT3b3WZiYiItLh1I2biLQyPYJdRESmLHXjJiKtTLd7i4jIlKVu3ESklalGW0REREQkAwq0RUREREQyoEBbRERERCQDCrRFRERERDKgQFtEREREJAMKtEVEREREMqBAW0REREQkAwq0RUREREQyoEBbRERERCQDCrRFRERERDKgQFtEREREJAMKtEVEREREMqBAW0REREQkAwq0RUREREQyoEBbRERERCQDCrRFRERERDKgQFtEREREJAMKtEVEREREMqBAW0REREQkA6kG2mb2bjO73cwGzOz+Gqd5o5mtj6a53cyelWaeRERERESaIe0a7ceBTwIfryWxmT0P+ALwDmAhcANwk5nNSzlfIiIiIiINlWqg7e7Xu/sNwGM1TvJW4Jvu/kN3HwIuAYaAU2pdppktMrPlZrY8l8vVn2kREWkoldsi0il6mrz8FcCVxS/u7mb2+2h4rc4GPgqwZs2aATO7JzG+G1gCbATyk8pt+9I6qk7rqDZaT9VVWkcHNj47TaFye/K0jqrTOqpO66i6SZXZNQXaZnYl8KYKST7u7ufVMq+EPYAdiWHbgXqajlwGXBN93uLuW+IjzWw5sBY43t3XTSCPbU/rqDqto9poPVWndQSo3J40raPqtI6q0zqqbrLrqNYa7XcB51QYP1DvgiO9wPzEsAXA+lpnEBXQW6omFBGRlqByW0Q6RU2Btrv3AX0ZLH8NsLL4xcwMeCbwzQyWJSIiIiLSMGl379djZjOBaeGrzYy+j+dLwGvM7EVmNh34Z2Am8K0Us7UFuADVnlSidVSd1lFttJ6q0zqqTuuoOq2j6rSOqtM6qm5S68jcPbWcmNn5RDe4xLm7ReM/DJzm7kfGpnkjcD6wL/BH4B3ufmdqmRIRERERaYJUA20REREREQn0CHYRERERkQwo0BYRERERyYACbRERERGRDCjQFhERERHJgAJtEREREZEMKNAWEREREcmAAm0RERERkQwo0BYRERERyUBbB9pm1m1ml5jZk2bWa2Y3mNniZuer1ZjZi83sN2bWZ2abzezzzc5TM5nZ683sF2a208xyiXFvNLPbzGxbtK6+b2ZHNSuvzVJlHXWb2cVm9kh03P3RzE5tVl6bIfr9d0fr53Ez+5KZ7VkhrZvZ6Y3OZ6tRmV0bldmlVGZXpzK7uqzK7bYOtIFzgZOBZwMHRMO+3rzstB4zOx64HrgUWERYT19uYpZawTbg88B7yozbA/goYT3tD6wGfmhmsxqWu9ZQaR29EzgDeDEwD/gIcI2ZHd6w3DVfHjidcEytIOwv/5VMZGbHAicCf2lo7lqXyuwqVGaXpTK7OpXZ1WVSbrf1I9jNbANwobt/Jfp+CHA/sMzdH2pm3lqFmf0auNXdz212XlpNdEL7sbv3VEgzB+gDVrr77xuUtZZRbh2Z2WeBxe7+htiwvwBnu/v1Dc9kCzCzVwDXuPv82LAZwO+AtwHXAue5+zealMWWoDK7OpXZ41OZXZ3K7NqlVW63bY22mc0HlgJ3Foe5+3pgJ/CMZuWrlUQFzrHAoJmtji6r/czMjml23qaQFwEDhGBAgi8BTzezp0WXJE8FeoCfNzlfzfQi4K7EsPOBW9z9143PTutRmV2dyuxUqMzencrs8lIpt8f919cG5kXvOxLDt8fGdbqFhD9bbyVcBrkXOAe4ycyWu/v2Juat5ZnZcsIl2392995m56eFPAD8AvgTUACGgDPcfVNTc9UkZvZ3hGPsuNiwY4DXAs9sUrZakcrs6lRmT4LK7HGpzE5Is9xu2xptoHgQzU8MX0CoIZGxdfRf7n6Xuw8D/wZMA57bvGy1PjN7GvBT4FJ3v7zZ+WkxnweOBpYB04GXAJeb2UubmqsmMLPXEmqLXuXuq6Nh0wnt/t7p7n3NzF+LUZldncrsCVKZXZHK7Ji0y+22DbSjf/YPAyuLw8zsYELNSPJSQEdy9x3AQ0C5hvrt23h/ksxsJfAz4CJ3/2STs9OKngV83d03uHvB3W8j1Jac2OR8NZSZvRn4InCSu/80Nmo/4Ejg6ujS/2bgKcAXzOzqJmS1JajMrk5l9sSozK5KZXYki3K7bQPtyBXAB81smZnNAy4GbtZNNSU+D7w5apvVA7wfGARua262midqozaT8M8eM5sZvczM/gb4CeEGiMuamtEmqrSOgF8Bp5nZ/tG4ZwPHE+727whm9m5CrxAvc/dfJUY/QmiL/MzY63Hgw8C7G5bJ1qQyuzqV2Qkqs6tTmV1dVuV2u/c60k0oqM8EZgA/At7m7pubma9WEh1kFxDuoJ0J/B54r7v/oZn5aiYzO5MyXfoQLqv9F6HN1kBi3Inu/ouMs9YyqqyjrcAngZMItZEbga+6+ycalsEmMzMHcoS2jqPcfe446R9CvY6ozK6ByuzdqcyuTmV2dVmV220daIuIiIiINEu7Nx0REREREWkKBdoiIiIiIhlQoC0iIiIikgEF2iIiIiIiGVCgLSIiIiKSAQXaIiIiIiIZUKAtIiIiIpIBBdoiIiIiIhn4/7iGVvQg735RAAAAAElFTkSuQmCC\n",
"text/plain": [
"