July 15, 2015
Despite rising production, food prices are higher and increasingly volatile
Affecting supply:
Affecting demand:
Build a model to examine some proposed drivers of the World Food Price Crisis:
Supply and demand:
\( \newcommand{\DEF}[2]{\underset{\scriptsize\color{grey}{\text{#1}}}{#2}}\) \[ \DEF{production}{\tilde{Q}_i} + \DEF{past storage}{Z_{i,-1}} \equiv \DEF{availability}{A_i} = \DEF{consumption}{C_i} + \DEF{storage}{Z_i} + \DEF{net exports}{Y_i} \]Production
\[\DEF{production}{\tilde{Q}_i} = \DEF{acreage}{q_{i,-1}} \times \DEF{yield}{\tilde{\epsilon}_i}\]Consumption demand
\[\DEF{consumption}{C_i} = \alpha_i \DEF{price}{P_i}^{-\beta_i}\]Trade:
\begin{equation} 0 \leq \DEF{exports}{y_{jk}} \leq \DEF{capacity}{\bar{y}_{jk}} \qquad\perp\qquad \begin{cases} P_k - \DEF{shipping}{\tau_{jk}} - P_j & \text{unrestricted} \\ \\ \min [P_k - \tau_{jk},\DEF{ceiling}{\bar{P}_j}] - P_j & \text{restricted} \end{cases} \end{equation}Private storage
\begin{equation} 0 \leq Z_i \leq \DEF{capacity}{\bar{Z}_{i}} \qquad\perp\qquad \delta \; \DEF{expected}{E P'_i} - P_i - \DEF{cost}{K} \end{equation}Public storage
alternatively
Share of land cultivated with wheat
Acreage:
\begin{align} q_\text{corn} &= (1-\lambda)\DEF{land}{L} \\ \\ q_\text{wheat} &=\lambda \DEF{land}{L} \end{align}Most parameters calibrated with historical data from PSD database (USDA)
World | Exporters | Importers | |
Corn |
|
|
|
Wheat |
|
|
|
Policy Scenarios | Policy Shocks |
|
|
CORN | WHEAT | |||||
---|---|---|---|---|---|---|
World | Exporter | Importer | World | Exporter | Importer | |
MEAN | ||||||
0: Baseline | 100.00 | 100.00 | 108.91 | 100.00 | 100.05 | 112.22 |
1: Price ceiling | 101.68 | 101.68 | 110.50 | 102.45 | 93.80 | 114.66 |
2: Public storage | 101.63 | 101.63 | 110.41 | 98.28 | 98.34 | 110.51 |
3: Ceiling + storage | 103.22 | 103.22 | 111.87 | 99.17 | 94.69 | 111.43 |
4: High demand | 118.18 | 118.18 | 126.2 | 115.19 | 115.23 | 127.41 |
STANDARD DEVIATION | ||||||
0: Baseline | 14.72 | 14.72 | 13.98 | 18.02 | 18.08 | 18.02 |
1: Price ceiling | 16.07 | 16.07 | 14.93 | 24.54 | 6.92 | 24.54 |
2: Public storage | 17.23 | 17.23 | 16.11 | 11.45 | 11.54 | 11.44 |
3: Ceiling + storage | 19.26 | 19.26 | 17.50 | 14.64 | 4.73 | 14.53 |
4: High demand | 21.31 | 21.31 | 16.88 | 18.09 | 18.13 | 18.09 |
If a poor grain-importing country decides to operate a grain reserve to stabilize prices...
Government runs a grain stockpile to deal with price fluctuations.
Objective, $V$ | Reward function, $r(\tau,p_g^*)$ |
---|---|
Hunger, $\Gamma$ | $\frac{1}{1-\rho}\left[1-\Gamma(\tau,p_g^*)\right]^{1-\rho} $ |
Welfare,$\int_y v_i$ | $\frac{1}{1-\rho}\int_y\left[v(\tau,p_g^*)\right]^{1-\rho}$ |
Hunger rate depends on price level, income per capita and income inequality
$\DEF{hunger rate}{\Gamma(P)} = \left[1+\left(\frac{c\DEF{price}{P^\alpha} (\DEF{Gini}{G}\pi)^\eta} {\zeta \DEF{income}{Y^\eta}\sin^\eta(G\pi)}\right)^{1/{G\eta}}\right]^{-1}$“The construction of this strategic reserve reflects the desire of my Government to promote national agricultural production, stabilize the market price of commodities and combat food insecurity. Indeed, the fight against hunger and extreme poverty constitutes the main pillars of government action.” Prime Minister, Laurent Lamothe
Food Crisis in Haiti:
Calibration of parameters: Haiti
Parameter | Description | Value |
---|---|---|
α | price elasticity food demand | 0.788 |
η | income elasticity food demand | 0.814 |
σ | elasticity of substitution | 0.500 |
θ | share of grain in food budget | 0.333 |
c | hunger threshold | 30.258 |
ζ | food demand scale | 1.208 |
Y | income per capita | 114.925 |
G | Gini coefficient | 0.590 |
pL | price of grain when low | 1.000 |
pH | price of grain when high | 1.850 |
pv | price of vegetable | 1.000 |
γ | proportion of years in crisis | 0.200 |
ψ | expected duration of food crisis | 3.000 |
δ | government discount factor | 0.970 |
ρ | government relative risk aversion | 2.500 |
φ | marginal cost of storage | 0.025 |
r | interest rate | 0.010 |
The optimal grain storage policy will...
Variable | tranquil | crisis | % change |
---|---|---|---|
Price of grain | 1.0 | 1.85 | 85.0 |
Price of food | 1.0 | 1.25 | 25.5 |
Food consumption | 50.8 | 42.5 | -16.4 |
Grain consumption | 16.9 | 11.7 | -31.1 |
Vegetable consumption | 33.9 | 31.8 | -6.3 |
Hunger rate (%) | 44.5 | 53.8 | 20.8 |
Storage |
Tariff |
Hunger |
In half of the crisis, the reserve would be empty!
The reserve would fail at preventing extreme hunger.
In this scenario, a grain reserve outperforms a cash reserve, but difference is small.
Resources used for grain reserve might be better spent at promoting growth.
Income redistribution, targeting the poor, may have a better outcome.
The promises | The challenges |
|
|
Availability
\[\DEF{production}{\tilde{q}_i} + (1-\phi)\DEF{past storage}{s_{i,-1}} \equiv \DEF{availability}{a_i} = \DEF{consumption}{c_i} + \DEF{storage}{s_i} \]Bellman equation
\[ V\left(a\right) = \max_{s\in [0,a]} \left\{u(a-s) + \delta E V\left(a'\right)\right\} \]subject to
\[a' = (1-\phi)s + \tilde{q}'\]Redistributing availabilities: country $B$ transfers $l = \psi(a_B - a_A)$ units of grain to country $A$
Insurance contract | Credit contract |
\[\hat{a}_A = (1-\psi)a_A + \psi a_B\]
\[\hat{a}_B = \psi a_A + (1-\psi)a_B\] |
\[\hat{a}_A = (1-\psi)a_A + \psi a_B - l_{-1}\]
\[\hat{a}_B = \psi a_A + (1-\psi)a_B + l_{-1}\] |
If any country defaults, they remain in autarky forever
Default |
\[\hat{a}_A = a_A\]
\[\hat{a}_B = a_B\] |
Insurance / Credit game | Country B | ||
---|---|---|---|
Cooperate | Default | ||
Country A | Cooperate | $W^A(a_A,a_B\color{red}{, l}),W^B(a_A,a_B\color{red}{, l}) $ | $V^A(a_A), V^B(a_B) - \DEF{stigma}{\sigma}$ |
Default | $V^A(a_A) - \sigma, V^B(a_B)$ | $V^A(a_A) - \sigma, V^B(a_B) - \sigma$ |
where
\[\DEF{value of cooperating}{W(a_A,a_B\color{red}{, l})} = \max_{s\in [0,\hat{a}]} \left\{u(\hat{a}-s) + \delta E \DEF{game payoff}{U\left(a'_A,a'_B\color{red}{, l}\right)}\right\}\]Numerical solution builds on CompEcon's gamesolve:
Approximation algorithm
Parameter | Description | Player 1 | Player 2 |
---|---|---|---|
$\rho$ | relative risk aversion | 2.00 | 2.00 |
φ | marginal cost of storage | 0.05 | 0.05 |
δ | government discount factor | 0.95 | 0.95 |
σ | stigma | 0.05 | 0.05 |
α | beta distribution parameter | 1.25 | 1.25 |
$\lambda$ | max. production shock | 0.30 | 0.30 |
ψ | shared availability | 0.15 | |
$\varrho$ | production correlation | 0.00 | |
Because bigger liabilities drive countries to default, reserve is more sustainable when
The reserve would last only a few years, regardless of contract.
The reserve would be more stable for negatively-correlated production shocks.
When sharing less grain, insurance contract is very stable.
![]() |
![]() |
![]() |
![]() |