Ill-conditioning of Vandermonde matrix

Ill-conditioning of Vandermonde matrix

Randall Romero Aguilar, PhD

This demo is based on the original Matlab demo accompanying the Computational Economics and Finance 2001 textbook by Mario Miranda and Paul Fackler.

Original (Matlab) CompEcon file: demlin02.m

Running this file requires the Python version of CompEcon. This can be installed with pip by running

!pip install compecon --upgrade

Last updated: 2022-Ago-19


import numpy as np
import pandas as pd
from numpy.linalg import norm, cond, solve
import time
import matplotlib.pyplot as plt
np.set_printoptions(precision=4)
plt.style.use('seaborn-dark')
plt.style.use('seaborn-talk')

Compute approximation error and matrix condition number

nvalues = np.arange(6, 101)

data = pd.DataFrame(index=nvalues, columns=['conv', 'errv'], dtype=float)
data.index.name = 'n'

for n in nvalues:
    v = np.vander(1.0 + np.arange(n))
    data.loc[n, 'errv'] = np.log10(norm(np.identity(n) - solve(v, v), ord=np.inf))
    data.loc[n, 'conv'] = np.log10(cond(v, p=2))

data.rename(columns=dict(errv="$||I-V^{-1}V||_\infty$", conv='Condition number of $V$'), inplace=True) 

Smooth using quadratic function

X = np.vstack([np.ones_like(nvalues), nvalues, nvalues**2]).T
b = np.linalg.lstsq(X, data)[0]
data_smooth = pd.DataFrame(10 ** (X @ b), index=data.index, columns=data.columns)

#b = np.linalg.lstsq(X, conv)[0]
#conv = 10 ** (X @ b)

Plot matrix condition numbers

fig, ax = plt.subplots(figsize=[12, 5])
ax.set_yscale('log')
data_smooth.plot(ax=ax)
ax.set(
    title='Ill-Conditioning of Vandermonde Matrix $V$', 
    xlabel='Order of Vandermonde Matrix $V$', 
    ylabel='Value', 
    yscale='log', 
    yticks=[1,1e100,1e200]);
../../_images/02 Ill-conditioning of Vandermonde matrix_7_0.png