Sparse linear equations
Sparse linear equations¶
Randall Romero Aguilar, PhD
This demo is based on the original Matlab demo accompanying the Computational Economics and Finance 2001 textbook by Mario Miranda and Paul Fackler.
Original (Matlab) CompEcon file: demlin03.m
Running this file requires the Python version of CompEcon. This can be installed with pip by running
!pip install compecon --upgrade
Last updated: 2022-Ago-19
import numpy as np
import pandas as pd
from numpy.linalg import solve
from scipy.sparse.linalg import spsolve
from timeit import default_timer as timer
import matplotlib.pyplot as plt
from scipy.sparse import csc_matrix
np.set_printoptions(precision=4)
plt.style.use('seaborn-dark')
plt.style.use('seaborn-talk')
Define some timing functions
tic = lambda: timer()
toc = lambda t: timer() - t
Compute the time to solve a system of equations, for full and sparce matrices
N, M = 800, 100
AA = np.random.rand(N, N)
bb = np.random.rand(N, 1)
for i in range(N):
for j in range(N):
if abs(i - j) > 1:
AA[i,j] = 0
nvalues = np.arange(20,N+1,30)
times = pd.DataFrame(index=nvalues, columns=['Using full matrix','Using sparse matrix'])
times.index.name='n'
for n in nvalues:
A = AA[:n, :n]
b = bb[:n]
tt = tic()
for i in range(M):
x = solve(A, b)
toc1 = toc(tt)
S = csc_matrix(A)
tt = tic()
for i in range(M):
x = spsolve(S, b)
toc2 = toc(tt)
times.loc[n] = toc1, toc2
Plot effort ratio
times['Ratio'] = times['Using sparse matrix'] / times['Using full matrix']
fig, axs = plt.subplots(2, 1, figsize=[12, 8], sharex=True)
times['Ratio'].plot(ax=axs[0])
axs[0].set(ylabel='Ratio',
title='Ratio of Sparse Solve Time to Full Solve Time')
axs[0].axhline(1.0, color='gray', linestyle=':')
times[['Using full matrix', 'Using sparse matrix']].plot(ax=axs[1])
axs[1].set(ylabel='seconds',
title='Solve Time in seconds')
[Text(0, 0.5, 'seconds'), Text(0.5, 1.0, 'Solve Time in seconds')]
times
Using full matrix | Using sparse matrix | Ratio | |
---|---|---|---|
n | |||
20 | 0.015677 | 0.012451 | 0.794241 |
50 | 0.008911 | 0.014726 | 1.652557 |
80 | 0.015079 | 0.015211 | 1.00878 |
110 | 0.02672 | 0.015222 | 0.569671 |
140 | 0.036531 | 0.018197 | 0.498118 |
170 | 0.05988 | 0.028821 | 0.481304 |
200 | 0.107153 | 0.03708 | 0.34605 |
230 | 0.141798 | 0.054089 | 0.381452 |
260 | 0.161393 | 0.064216 | 0.397887 |
290 | 0.212905 | 0.059762 | 0.2807 |
320 | 0.280219 | 0.064393 | 0.229795 |
350 | 0.327173 | 0.044081 | 0.134732 |
380 | 0.438411 | 0.071409 | 0.162882 |
410 | 0.759178 | 0.077416 | 0.101974 |
440 | 1.085809 | 0.112562 | 0.103666 |
470 | 1.588059 | 0.099183 | 0.062455 |
500 | 1.224117 | 0.0663 | 0.054161 |
530 | 1.322073 | 0.094321 | 0.071343 |
560 | 1.836372 | 0.142978 | 0.077859 |
590 | 1.965873 | 0.117131 | 0.059582 |
620 | 2.097353 | 0.1133 | 0.05402 |
650 | 2.547172 | 0.120363 | 0.047253 |
680 | 2.502875 | 0.079582 | 0.031796 |
710 | 2.881523 | 0.100067 | 0.034727 |
740 | 3.130402 | 0.148704 | 0.047503 |
770 | 3.491733 | 0.149018 | 0.042677 |
800 | 3.744745 | 0.121962 | 0.032569 |