Optimization with qnewton

Optimization with qnewton

Randall Romero Aguilar, PhD

This demo is based on the original Matlab demo accompanying the Computational Economics and Finance 2001 textbook by Mario Miranda and Paul Fackler.

Original (Matlab) CompEcon file: demopt05.m

Running this file requires the Python version of CompEcon. This can be installed with pip by running

!pip install compecon --upgrade

Last updated: 2021-Oct-01


from compecon import OP
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm

np.set_printoptions(precision=4,suppress=True)
plt.style.use('seaborn')

Example 1

Find the optimal value of $\(f(x) = x^3 - 12x^2 + 36x + 8\)$

def f(x):
    return x ** 3 - 12 * x ** 2 + 36 * x + 8

F = OP(f)

x = F.qnewton(x0=4.0)
J = F.jacobian(x)
E = np.linalg.eig(F.hessian(x))[0]

print('x = ', x, '\nJ = ', J, '\nE = ', E)
x =  [2.] 
J =  [-0.] 
E =  [-12.]
fig, ax = plt.subplots()
xx = np.linspace(0,8.2,100)
ax.plot(xx,f(xx))
ax.plot(4,f(4),'b.',ms=10)
ax.plot(x,f(x),'r.',ms=18)
[<matplotlib.lines.Line2D at 0x2154ea95a60>]
../../_images/05 Optimization with qnewton_4_1.png

Find the optimum for

\[g(x,y) = 5 - 4x^2 - 2y^2 - 4xy - 2y\]
def g(z):
    x, y = z
    return 5 - 4*x**2 - 2*y**2 - 4*x*y - 2*y
    
G = OP(g, print=True)
x = G.qnewton(x0=[-1, 1])
J = G.jacobian(x)
E = np.linalg.eig(G.hessian(x))[0]
print('x = ', x, '\nJ = ', J, '\nE = ', E)
   0     0  1.12e+00
   1     0  1.58e+00
   2     0  1.22e-11
x =  [ 0.5 -1. ] 
J =  [0. 0.] 
E =  [-10.4721  -1.5279]
xx0 = np.linspace(-1.0,2.0,25)
xx1 = np.linspace(-2.5,0.5,25)
x0, x1 = np.meshgrid(xx0,xx1)

fig, ax = plt.subplots()
ax = fig.add_subplot(1, 1, 1, projection='3d')
ax.plot_surface(x0, x1, g([x0, x1]), rstride=1, cstride=1, 
                cmap=cm.Spectral, linewidth=0, antialiased=False)
ax.set_xlabel('$x_0$')
ax.set_xticks(np.linspace(-1.0,2.0,4))
ax.set_ylabel('$x_1$')
ax.set_yticks(np.linspace(-2.5,0.5,4))
ax.set_zlabel('$g(x_0,x_1)$')
Text(0.5, 0, '$g(x_0,x_1)$')
../../_images/05 Optimization with qnewton_7_1.png